1
|
Horasan M, Verner KA, Main RP, Nauman EA. Characterization of strains induced by in vivo locomotion and axial tibiotarsal loading in a chukar partridge model. Bone 2025; 196:117497. [PMID: 40280253 DOI: 10.1016/j.bone.2025.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Rodent models have offered valuable insights into the mechanobiological mechanisms that regulate bone adaptation responses to dynamic mechanical stimuli. However, using avian models may provide new insights into the mechanisms of bone adaptation to dynamic loads, as bird bones have distinct features that differ from mammalian bones. This paper illuminates these aspects by evaluating the mechanical environment in a novel avian, chukar partridge tibiotarsus (TBT), during fast locomotion and in cortical and cancellous tissue under in vivo dynamic compressive loading within the TBT. We measured in vivo mechanical strains at the TBT midshaft on the anterior, medial, and posterior surfaces during locomotion at various treadmill speeds. The mean in vivo strains measured on the anterior, medial, and posterior surfaces of the TBT midshaft were 154 με, -397 με, and -438 με, respectively, at a treadmill speed of 2 m/s. The mean experimentally measured strains on the anterior, medial, and posterior surfaces of the TBT were 114.7 με, -952.6 με, and -593.7 με under an in vivo dynamic compressive load of 130 N. The study, which employs a micro-computed tomography (microCT) based finite element model in combination with diaphyseal strain gauge measures, found that cancellous strains were greater than those in the midshaft cortical bone. Sensitivity analyses revealed that the material property of cortical bone was the most significant model parameter. In the midshaft cortical volume of interest (VOI), daily dynamic loading increased the maximum moment of inertia and reduced the bone area in the loaded limb compared to the contralateral control limb after three weeks of loading. Despite the strong correlations between the computationally modeled strains and experimentally measured strains at the medial and posterior gauge sites, no correlations existed between the computationally modeled strains and strain gradients, and histologically measured bone formation thickness at the mid-diaphyseal cross-section of the TBT.
Collapse
Affiliation(s)
- Murat Horasan
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; Department of Mechanical Engineering, Aksaray University, Aksaray, Turkey.
| | - Kari A Verner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Explico Engineering, Denver, CO, USA.
| | - Russell P Main
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Eric A Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Meslier QA, Hoffmann J, Oehrlein R, Kurczy D, Monaghan JR, Shefelbine SJ. 3D spatial distribution of Sost mRNA and sclerostin protein expression in response to in vivo tibia loading in female mice. Bone 2025; 193:117422. [PMID: 39978613 DOI: 10.1016/j.bone.2025.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Bones adapt to external mechanical loads through a process known as mechanoadaptation. Osteocytes are the bone cells that sense the mechanical environment and initiate a biological response. Investigating the changes in osteocyte molecular expression following mechanical loading has been instrumental in characterizing the regulatory pathways involved in bone adaptation. However, current methods for examining osteocyte molecular expression do not preserve the three-dimensional structure of the bone, which plays a critical role in the mechanical stimuli sensed by the osteocytes and their spatially controlled biological responses. In this study, we used WISH-BONE (Whole-mount In Situ Histology of Bone) to investigate the spatial distribution of Sost-mRNA transcripts and its encoded protein, sclerostin, in 3D mouse tibia midshaft following in vivo tibia loading. Our findings showed a decrease in the percentage of Sost-positive osteocytes, after loading, along the posterior-lateral side of the tibia. The number of sclerostin-positive osteocytes were found to significantly decrease at a very specific 2D location of the tibia after loading. However, in 3D, the total number of sclerostin-positive osteocytes was similar between loaded and control legs. This work is the first to provide a 3D analysis of Sost and sclerostin distribution in loaded versus contralateral mouse tibia midshafts. It also highlights the importance of the bone region analyzed and the method utilized when interpreting mechanoadaptation results. WISH-BONE represents a powerful tool for further characterization of mechanosensitive genes regulation in bone and holds the potential for advancing the development of new treatments targeting mechanosensitivity-related bone disorders.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, MA, United States; LifeCanvas Technologies, Cambridge, MA, United States.
| | - Jacy Hoffmann
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Robert Oehrlein
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Daniel Kurczy
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - James R Monaghan
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Biology, Northeastern University, Boston, MA, United States; Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
3
|
Moraiti S, Cheong VS, Dall’Ara E, Kadirkamanathan V, Bhattacharya P. A novel framework for elucidating the effect of mechanical loading on the geometry of ovariectomized mouse tibiae using principal component analysis. Front Bioeng Biotechnol 2024; 12:1469272. [PMID: 39502499 PMCID: PMC11534826 DOI: 10.3389/fbioe.2024.1469272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Murine models are used to test the effect of anti-osteoporosis treatments as they replicate some of the bone phenotypes observed in osteoporotic (OP) patients. The effect of disease and treatment is typically described as changes in bone geometry and microstructure over time. Conventional assessment of geometric changes relies on morphometric scalar parameters. However, being correlated with each other, these parameters do not describe separate fractions of variations and offer only a moderate insight into temporal changes. Methods The current study proposes a novel image-based framework that employs deformable image registration on in vivo longitudinal images of bones and Principal Component Analysis (PCA) for improved quantification of geometric effects of OP treatments. This PCA-based model and a novel post-processing of score changes provide orthogonal modes of shape variations temporally induced by a course of treatment (specifically in vivo mechanical loading). Results and Discussion Errors associated with the proposed framework are rigorously quantified and it is shown that the accuracy of deformable image registration in capturing the bone shapes (∼1 voxel = 10.4 μm) is of the same order of magnitude as the relevant state-of-the-art evaluation studies. Applying the framework to longitudinal image data from the midshaft section of ovariectomized mouse tibia, two mutually orthogonal mode shapes are reliably identified to be an effect of treatment. The mode shapes captured changes of the tibia geometry due to the treatment at the anterior crest (maximum of 0.103 mm) and across the tibia midshaft section and the posterior (0.030 mm) and medial (0.024 mm) aspects. These changes agree with those reported previously but are now described in a compact fashion, as a vector field of displacements on the bone surface. The proposed framework enables a more detailed investigation of the effect of disease and treatment on bones in preclinical studies and boosts the precision of such assessments.
Collapse
Affiliation(s)
- Stamatina Moraiti
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vee San Cheong
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Future Health Technologies Programme, Singapore-ETH Centre, Create campus, Singapore, Singapore
| | - Enrico Dall’Ara
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Pinaki Bhattacharya
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Zimmermann EA, DeVet T, Cilla M, Albiol L, Kavaseri K, Andrea C, Julien C, Tiedemann K, Panahifar A, Alidokht SA, Chromik R, Komarova SV, Reinhardt DP, Zaslansky P, Willie BM. Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1 C1041G/+ mouse model of Marfan syndrome. Matrix Biol Plus 2024; 23:100155. [PMID: 39049903 PMCID: PMC11267061 DOI: 10.1016/j.mbplus.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.
Collapse
Affiliation(s)
- Elizabeth A. Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Taylor DeVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laia Albiol
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Christine Andrea
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Sima A. Alidokht
- Department of Mechanical Engineering, Memorial University of Newfoundland, St. John’s, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Richard Chromik
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dieter P. Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, CC3 -Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Chen J, Aido M, Roschger A, van Tol A, Checa S, Willie BM, Weinkamer R. Spatial variations in the osteocyte lacuno-canalicular network density and analysis of the connectomic parameters. PLoS One 2024; 19:e0303515. [PMID: 38743675 PMCID: PMC11093372 DOI: 10.1371/journal.pone.0303515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Osteocyte lacuno-canalicular network (LCN) is comprised of micrometre-sized pores and submicrometric wide channels in bone. Accumulating evidence suggests multiple functions of this network in material transportation, mechanobiological signalling, mineral homeostasis and bone remodelling. Combining rhodamine staining and confocal laser scanning microscopy, the longitudinal cross-sections of six mouse tibiae were imaged, and the connectome of the network was quantified with a focus on the spatial heterogeneities of network density, connectivity and length of canaliculi. In-vivo loading and double calcein labelling on these tibiae allowed differentiating the newly formed bone from the pre-existing regions. The canalicular density of the murine cortical bone varied between 0.174 and 0.243 μm/μm3, and therefore is three times larger than the corresponding value for human femoral midshaft osteons. The spatial heterogeneity of the network was found distinctly more pronounced across the cortex than along the cortex. We found that in regions with a dense network, the LCN conserves its largely tree-like character, but increases the density by including shorter canaliculi. The current study on healthy mice should serve as a motivating starting point to study the connectome of genetically modified mice, including models of bone diseases and of reduced mechanoresponse.
Collapse
Affiliation(s)
- Junning Chen
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Marta Aido
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Physics of Materials, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Alexander van Tol
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Department of Pediatric Surgery, Research Centre, Shriners Hospital for Children-Canada, McGill University, Montreal, Canada
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
6
|
Yang J, Pei Q, Wu X, Dai X, Li X, Pan J, Wang B. Stress reduction through cortical bone thickening improves bone mechanical behavior in adult female Beclin-1 +/- mice. Front Bioeng Biotechnol 2024; 12:1357686. [PMID: 38600946 PMCID: PMC11004267 DOI: 10.3389/fbioe.2024.1357686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Fragility fractures, which are more prevalent in women, may be significantly influenced by autophagy due to altered bone turnover. As an essential mediator of autophagy, Beclin-1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation, however, the alteration in the local bone mechanical environment in female Beclin-1+/- mice remains unclear. In this study, our aim is to investigate the biomechanical behavior of femurs from seven-month-old female wild-type (WT) and Beclin-1+/- mice under peak physiological load, using finite element analysis on micro-CT images. Micro-CT imaging analyses revealed femoral cortical thickening in Beclin-1+/- female mice compared to WT. Three-point bending test demonstrated a 63.94% increase in whole-bone strength and a 61.18% increase in stiffness for female Beclin-1+/- murine femurs, indicating improved biomechanical integrity. After conducting finite element analysis, Beclin-1+/- mice exhibited a 26.99% reduction in von Mises stress and a 31.62% reduction in maximum principal strain in the femoral midshaft, as well as a 36.64% decrease of von Mises stress in the distal femurs, compared to WT mice. Subsequently, the strength-safety factor was determined using an empirical formula, revealing that Beclin-1+/- mice exhibited significantly higher minimum safety factors in both the midshaft and distal regions compared to WT mice. In summary, considering the increased response of bone adaptation to mechanical loading in female Beclin-1+/- mice, our findings indicate that increasing cortical bone thickness significantly improves bone biomechanical behavior by effectively reducing stress and strain within the femoral shaft.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qilin Pei
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xingfan Wu
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bin Wang
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Farage-O’Reilly SM, Cheong VS, Pickering E, Pivonka P, Bellantuono I, Kadirkamanathan V, Dall’Ara E. The loading direction dramatically affects the mechanical properties of the mouse tibia. Front Bioeng Biotechnol 2024; 12:1335955. [PMID: 38380263 PMCID: PMC10877372 DOI: 10.3389/fbioe.2024.1335955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: The in vivo tibial loading mouse model has been extensively used to evaluate bone adaptation in the tibia after mechanical loading treatment. However, there is a prevailing assumption that the load is applied axially to the tibia. The aim of this in silico study was to evaluate how much the apparent mechanical properties of the mouse tibia are affected by the loading direction, by using a validated micro-finite element (micro-FE) model of mice which have been ovariectomized and exposed to external mechanical loading over a two-week period. Methods: Longitudinal micro-computed tomography (micro-CT) images were taken of the tibiae of eleven ovariectomized mice at ages 18 and 20 weeks. Six of the mice underwent a mechanical loading treatment at age 19 weeks. Micro-FE models were generated, based on the segmented micro-CT images. Three models using unitary loads were linearly combined to simulate a range of loading directions, generated as a function of the angle from the inferior-superior axis (θ, 0°-30° range, 5° steps) and the angle from the anterior-posterior axis (ϕ, 0°: anterior axis, positive anticlockwise, 0°-355° range, 5° steps). The minimum principal strain was calculated and used to estimate the failure load, by linearly scaling the strain until 10% of the nodes reached the critical strain level of -14,420 με. The apparent bone stiffness was calculated as the ratio between the axial applied force and the average displacement along the longitudinal direction, for the loaded nodes. Results: The results demonstrated a high sensitivity of the mouse tibia to the loading direction across all groups and time points. Higher failure loads were found for several loading directions (θ = 10°, ϕ 205°-210°) than for the nominal axial case (θ = 0°, ϕ = 0°), highlighting adaptation of the bone for loading directions far from the nominal axial one. Conclusion: These results suggest that in studies which use mouse tibia, the loading direction can significantly impact the failure load. Thus, the magnitude and direction of the applied load should be well controlled during the experiments.
Collapse
Affiliation(s)
- Saira Mary Farage-O’Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vee San Cheong
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Miller CJ, Pickering E, Martelli S, Dall'Ara E, Delisser P, Pivonka P. Cortical bone adaptation response is region specific, but not peak load dependent: insights from μ CT image analysis and mechanostat simulations of the mouse tibia loading model. Biomech Model Mechanobiol 2024; 23:287-304. [PMID: 37851203 PMCID: PMC10901956 DOI: 10.1007/s10237-023-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The two major aims of the present study were: (i) quantify localised cortical bone adaptation at the surface level using contralateral endpoint imaging data and image analysis techniques, and (ii) investigate whether cortical bone adaptation responses are universal or region specific and dependent on the respective peak load. For this purpose, we re-analyse previously published μ CT data of the mouse tibia loading model that investigated bone adaptation in response to sciatic neurectomy and various peak load magnitudes (F = 0, 2, 4, 6, 8, 10, 12 N). A beam theory-based approach was developed to simulate cortical bone adaptation in different sections of the tibia, using longitudinal strains as the adaptive stimuli. We developed four mechanostat models: universal, surface-based, strain directional-based, and combined surface and strain direction-based. Rates of bone adaptation in these mechanostat models were computed using an optimisation procedure (131,606 total simulations), performed on a single load case (F = 10 N). Subsequently, the models were validated against the remaining six peak loads. Our findings indicate that local bone adaptation responses are quasi-linear and bone region specific. The mechanostat model which accounted for differences in endosteal and periosteal regions and strain directions (i.e. tensile versus compressive) produced the lowest root mean squared error between simulated and experimental data for all loads, with a combined prediction accuracy of 76.6, 55.0 and 80.7% for periosteal, endosteal, and cortical thickness measurements (in the midshaft of the tibia). The largest root mean squared errors were observed in the transitional loads, i.e. F = 2 to 6 N, where inter-animal variability was highest. Finally, while endpoint imaging studies provide great insights into organ level bone adaptation responses, the between animal and loaded versus control limb variability make simulations of local surface-based adaptation responses challenging.
Collapse
Affiliation(s)
- Corey J Miller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
9
|
Abstract
PURPOSE OF THE REVIEW Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
| |
Collapse
|
10
|
Ning B, Mustafy T, Londono I, Laporte C, Villemure I. Impact loading intensifies cortical bone (re)modeling and alters longitudinal bone growth of pubertal rats. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01706-5. [PMID: 37000273 DOI: 10.1007/s10237-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Tanvir Mustafy
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, 1216, Bangladesh
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada.
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
11
|
Zhao YC, Zhang Y, Jiang F, Wu C, Wan B, Syeda R, Li Q, Shen B, Ju LA. A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep Bone Marrow. Adv Healthc Mater 2023; 12:e2201830. [PMID: 36521080 PMCID: PMC11469229 DOI: 10.1002/adhm.202201830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The mechanical stimuli generated by body exercise can be transmitted from cortical bone into the deep bone marrow (mechanopropagation). Excitingly, a mechanosensitive perivascular stem cell niche is recently identified within the bone marrow for osteogenesis and lymphopoiesis. Although it is long known that they are maintained by exercise-induced mechanical stimulation, the mechanopropagation from compact bone to deep bone marrow vasculature remains elusive of this fundamental mechanobiology field. No experimental system is available yet to directly understand such exercise-induced mechanopropagation at the bone-vessel interface. To this end, taking advantage of the revolutionary in vivo 3D deep bone imaging, an integrated computational biomechanics framework to quantitatively evaluate the mechanopropagation capabilities for bone marrow arterioles, arteries, and sinusoids is devised. As a highlight, the 3D geometries of blood vessels are smoothly reconstructed in the presence of vessel wall thickness and intravascular pulse pressure. By implementing the 5-parameter Mooney-Rivlin model that simulates the hyperelastic vessel properties, finite element analysis to thoroughly investigate the mechanical effects of exercise-induced intravascular vibratory stretching on bone marrow vasculature is performed. In addition, the blood pressure and cortical bone bending effects on vascular mechanoproperties are examined. For the first time, movement-induced mechanopropagation from the hard cortical bone to the soft vasculature in the bone marrow is numerically simulated. It is concluded that arterioles and arteries are much more efficient in propagating mechanical force than sinusoids due to their stiffness. In the future, this in-silico approach can be combined with other clinical imaging modalities for subject/patient-specific vascular reconstruction and biomechanical analysis, providing large-scale phenotypic data for personalized mechanobiology discovery.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
- Charles Perkins CentreThe University of Sydney2006New South WalesCamperdownAustralia
- The University of Sydney Nano Institute (Sydney Nano)The University of Sydney2006New South WalesCamperdownAustralia
| | - Yingqi Zhang
- School of Biomedical EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
- Charles Perkins CentreThe University of Sydney2006New South WalesCamperdownAustralia
- The University of Sydney Nano Institute (Sydney Nano)The University of Sydney2006New South WalesCamperdownAustralia
| | - Fengtao Jiang
- School of Biomedical EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
- Charles Perkins CentreThe University of Sydney2006New South WalesCamperdownAustralia
- The University of Sydney Nano Institute (Sydney Nano)The University of Sydney2006New South WalesCamperdownAustralia
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
| | - Ruhma Syeda
- Department of NeuroscienceUniversity of Texas Southwestern Medical Center75235TXDallasUSA
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
| | - Bo Shen
- National Institute of Biological ScienceZhongguancun Life Science Park102206BeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua University102206BeijingChina
| | - Lining Arnold Ju
- School of Biomedical EngineeringThe University of Sydney2008New South WalesDarlingtonAustralia
- Charles Perkins CentreThe University of Sydney2006New South WalesCamperdownAustralia
- The University of Sydney Nano Institute (Sydney Nano)The University of Sydney2006New South WalesCamperdownAustralia
| |
Collapse
|
12
|
Meslier QA, DiMauro N, Somanchi P, Nano S, Shefelbine SJ. Manipulating load-induced fluid flow in vivo to promote bone adaptation. Bone 2022; 165:116547. [PMID: 36113842 DOI: 10.1016/j.bone.2022.116547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Mechanical stimulation is critical to maintaining bone mass and strength. Strain has been commonly thought of as the mechanical stimulus driving bone adaptation. However, numerous studies have hypothesized that fluid flow in the lacunar-canalicular system plays a role in mechanoadaptation. The role of fluid flow compared to strain magnitude on bone remodeling has yet to be characterized. This study aimed to determine the contribution of fluid flow velocity compared to strain on bone adaptation. We used finite element modeling to design in vivo experiments, manipulating strain and fluid flow contributions. Using a uniaxial compression tibia model in mice, we demonstrated that high fluid flow velocity results in significant bone adaptation even under low strain magnitude. In contrast, high strain magnitude paired with low fluid velocity does not trigger a bone response. These findings support previous hypotheses stating that fluid flow is the principal mechanical stimulus driving bone adaptation. Moreover, they give new insights regarding bone adaptative response and provide new pathways toward treatment against age-related mechanosensitivity loss in bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nicole DiMauro
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Priya Somanchi
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sarah Nano
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
13
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
14
|
Young SAE, Rummler M, Taïeb HM, Garske DS, Ellinghaus A, Duda GN, Willie BM, Cipitria A. In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events. Bone 2022; 161:116432. [PMID: 35569733 DOI: 10.1016/j.bone.2022.116432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.
Collapse
Affiliation(s)
- Sarah A E Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Hubert M Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Biodonostia Health Research Institute, Group of Bioengineering in Regeneration and Cancer, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
Oliviero S, Cheong VS, Roberts BC, Orozco Diaz CA, Griffiths W, Bellantuono I, Dall’Ara E. Reproducibility of Densitometric and Biomechanical Assessment of the Mouse Tibia From In Vivo Micro-CT Images. Front Endocrinol (Lausanne) 2022; 13:915938. [PMID: 35846342 PMCID: PMC9282377 DOI: 10.3389/fendo.2022.915938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Interventions for bone diseases (e.g. osteoporosis) require testing in animal models before clinical translation and the mouse tibia is among the most common tested anatomical sites. In vivo micro-Computed Tomography (microCT) based measurements of the geometrical and densitometric properties are non-invasive and therefore constitute an important tool in preclinical studies. Moreover, validated micro-Finite Element (microFE) models can be used for predicting the bone mechanical properties non-invasively. However, considering that the image processing pipeline requires operator-dependant steps, the reproducibility of these measurements has to be assessed. The aim of this study was to evaluate the intra- and inter-operator reproducibility of several bone parameters measured from microCT images. Ten in vivo microCT images of the right tibia of five mice (at 18 and 22 weeks of age) were processed. One experienced operator (intra-operator analysis) and three different operators (inter-operator) aligned each image to a reference through a rigid registration and selected a volume of interest below the growth plate. From each image the following parameters were measured: total bone mineral content (BMC) and density (BMD), BMC in 40 subregions (ten longitudinal sections, four quadrants), microFE-based stiffness and failure load. Intra-operator reproducibility was acceptable for all parameters (precision error, PE < 3.71%), with lowest reproducibility for stiffness (3.06% at week 18, 3.71% at week 22). The inter-operator reproducibility was slightly lower (PE < 4.25%), although still acceptable for assessing the properties of most interventions. The lowest reproducibility was found for BMC in the lateral sector at the midshaft (PE = 4.25%). Densitometric parameters were more reproducible than most standard morphometric parameters calculated in the proximal trabecular bone. In conclusion, microCT and microFE models provide reproducible measurements for non-invasive assessment of the mouse tibia properties.
Collapse
Affiliation(s)
- Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for bone Research, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Vee San Cheong
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Bryant C. Roberts
- Department of Oncology and Metabolism, Mellanby Centre for bone Research, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Amnael Orozco Diaz
- Department of Oncology and Metabolism, Mellanby Centre for bone Research, University of Sheffield, Sheffield, United Kingdom
| | - William Griffiths
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for bone Research, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, Mellanby Centre for bone Research, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Paul GR, Vallaster P, Rüegg M, Scheuren AC, Tourolle DC, Kuhn GA, Wehrle E, Müller R. Tissue-Level Regeneration and Remodeling Dynamics are Driven by Mechanical Stimuli in the Microenvironment in a Post-Bridging Loaded Femur Defect Healing Model in Mice. Front Cell Dev Biol 2022; 10:856204. [PMID: 35686050 PMCID: PMC9171432 DOI: 10.3389/fcell.2022.856204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Bone healing and remodeling are mechanically driven processes. While the generalized response to mechanical stimulation in bone is well-understood, much less is known about the mechanobiology-regulating tissue-scale bone formation and resorption during the reparative and remodeling phases of fracture healing. In this study, we combined computational approaches in the form of finite element analysis and experimental approaches by using a loaded femoral defect model in mice to investigate the role of mechanical stimulation in the microenvironment of bone. Specifically, we used longitudinal micro-computed tomography to observe temporal changes in bone at different densities and micro-finite element analysis to map the mechanics of the microenvironment to tissue-scale formation, quiescence (no change in bone presence between time points), and resorption dynamics in the late reparative and remodeling phases (post bridging). Increasing levels of effective strain led to increasing conditional probability of bone formation, while decreasing levels of effective strain led to increasing probability of bone resorption. In addition, the analysis of mineralization dynamics showed both a temporal and effective strain level-dependent behavior. A logarithmic-like response was displayed, where the conditional probability of bone formation or resorption increased rapidly and plateaued or fell rapidly and plateaued as mechanical strain increased.
Collapse
|
17
|
Rooney AM, Ayobami OO, Kelly NH, Schimenti JC, Ross FP, van der Meulen MCH. Bone mass and adaptation to mechanical loading are sexually dimorphic in adult osteoblast-specific ERα knockout mice. Bone 2022; 158:116349. [PMID: 35123146 DOI: 10.1016/j.bone.2022.116349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Estrogen receptor-alpha (ERα) regulates bone mass and is implicated in bone tissue's response to mechanical loading. The effects of ERα deletion in mice depend on sex, anatomical location, and the cellular stage at which ERα is removed. Few studies have investigated the effect of age on the role of ERα in skeletal maintenance and functional adaptation. We previously demonstrated that bone mass and adaptation to loading were altered in growing 10-week-old female and male mice lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO). Here our goal was to determine the effects of ERα and mechanical loading in skeletally-mature adult mice. We subjected 26-week-old skeletally-mature adult pOC-ERαKO and littermate control (LC) mice of both sexes to two weeks of in vivo cyclic tibial loading. ERα deletion in male mice did not alter bone mass or the response to loading. Adult female pOC-ERαKO mice had reduced cancellous and cortical bone mass and increased adaptation to high-magnitude mechanical loading compared to LC mice. Thus, ERα deletion from mature osteoblasts reduced the bone mass and increased the mechanoadaptation of adult female but not male mice. Additionally, compared to our previous work in young mice, adult female mice had greatly reduced mechanoadaptation and adult male mice retained most of their mechanoadaptation with age.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Olufunmilayo O Ayobami
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Natalie H Kelly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - John C Schimenti
- College of Veterinary Medicine, Cornell University, Ithaca 14853, NY, USA.
| | - F Patrick Ross
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Research Division, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
18
|
The adaptive response of rat tibia to different levels of peak strain and durations of experiment. Med Eng Phys 2022; 102:103785. [DOI: 10.1016/j.medengphy.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
19
|
McGregor NE, Walker EC, Chan AS, Poulton IJ, Cho EHJ, Windahl SH, Sims NA. STAT3 Hyperactivation Due to SOCS3 Deletion in Murine Osteocytes Accentuates Responses to Exercise- and Load-Induced Bone Formation. J Bone Miner Res 2022; 37:547-558. [PMID: 34870348 DOI: 10.1002/jbmr.4484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/07/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Cortical bone develops and changes in response to mechanical load, which is sensed by bone-embedded osteocytes. The bone formation response to load depends on STAT3 intracellular signals, which are upregulated after loading and are subject to negative feedback from Suppressor of Cytokine Signaling 3 (Socs3). Mice with Dmp1Cre-targeted knockout of Socs3 have elevated STAT3 signaling in osteocytes and display delayed cortical bone maturation characterized by impaired accrual of high-density lamellar bone. This study aimed to determine whether these mice exhibit an altered response to mechanical load. The approach used was to test both treadmill running and tibial compression in female Dmp1Cre.Socs3f/f mice. Treadmill running for 5 days per week from 6 to 11 weeks of age did not change cortical bone mass in control mice, but further delayed cortical bone maturation in Dmp1Cre.Socs3f/f mice; accrual of high-density bone was suppressed, and cortical thickness was less than in genetically-matched sedentary controls. When strain-matched anabolic tibial loading was tested, both control and Dmp1Cre.Socs3f/f mice exhibited a significantly greater cortical thickness and periosteal perimeter in loaded tibia compared with the contralateral non-loaded bone. At the site of greatest compressive strain, the loaded Dmp1Cre.Socs3f/f tibias showed a significantly greater response than controls, indicated by a greater increase in cortical thickness. This was due to a greater bone formation response on both periosteal and endocortical surfaces, including formation of abundant woven bone on the periosteum. This suggests a greater sensitivity to mechanical load in Dmp1Cre.Socs3f/f bone. In summary, mice with targeted SOCS3 deletion and immature cortical bone have an exaggerated response to both physiological and experimental mechanical loads. We conclude that there is an optimal level of osteocytic response to mechanical load required for cortical bone maturation and that load-induced bone formation may be increased by augmenting STAT3 signaling within osteocytes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Audrey Sm Chan
- Centre for Muscle Research, The University of Melbourne, Melbourne, Australia
| | | | - Ellie H-J Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Australia
| | - Sara H Windahl
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| |
Collapse
|
20
|
Pickering E, Trichilo S, Delisser P, Pivonka P. Beam theory for rapid strain estimation in the mouse tibia compression model. Biomech Model Mechanobiol 2022; 21:513-525. [PMID: 34982274 DOI: 10.1007/s10237-021-01546-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
The mouse tibia compression model is a leading model for studying bone's mechanoadaptive response to load. In studying this mechanoadaptive response, (FE) modelling is often used to determine the stress/strain within the tibia. The development of such models can be challenging and computationally expensive. An alternate approach is to use continuum mechanics based analytical theories, such as beam theory (BT). However, applying BT to the mouse tibia requires the fibula be neglected, introducing error in the stress/strain distribution. While several studies have applied BT to the mouse tibia, no study has explored the accuracy of this approach. To address these questions, this work investigates the use of BT in determining stress/strain within the mouse tibia. By comparing BT against FE modelling, it was found that BT can accurately predict tibial stress/strain if correction factors are applied to account for the effect of the fibula. The 25, 37, 50 and 75% cross sections are studied. Focusing on the 37% cross section, without correction, BT can have errors of approximately 21.6%. With correction, this is reduced to 6.6%. Such correction factors are presented. The developed BT model is applicable in the diaphysis and distal metaphysis, where the assumptions of BT are valid. This work verifies BT for determining localised strains in a mouse tibia compression model. This is anticipated to provide efficiency dividends, allowing for high throughput modelling of the mouse tibia, advancing study of bone's mechanoadaptive response.
Collapse
Affiliation(s)
- Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia.
| | - Silvia Trichilo
- Vincent's Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Delisser
- Veterinary Specialist Services, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia
| |
Collapse
|
21
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
22
|
Cheong VS, Roberts BC, Kadirkamanathan V, Dall'Ara E. Positive interactions of mechanical loading and PTH treatments on spatio-temporal bone remodelling. Acta Biomater 2021; 136:291-305. [PMID: 34563722 DOI: 10.1016/j.actbio.2021.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
Osteoporosis is one of the most common skeletal diseases, but current therapies are limited to generalized antiresorptive or anabolic interventions, which do not target regions that would benefit from improvements to skeletal health. To improve the evaluation of treatment plans, we used a spatio-temporal multiscale approach that combines longitudinal in vivo micro-computed tomography (micro-CT) and in silico subject-specific finite element modeling to quantitatively map bone adaptation changes due to disease and treatment at high resolution. Our findings show time and region-dependent modifications in bone remodelling following one and two sets of mechanical loading and/or pharmacological interventions. The multiscale results highlighted that the distal section was unaffected by mechanical loading alone but the proximal tibia had the greatest gain from positive interactions of combined therapies. Mechanical loading abated the catabolic effect of PTH, but the main benefit of combined treatments occurred from the additive interactions of the two therapies in periosteal apposition. These results provide detailed insight into the efficacy of combined treatments, facilitating the optimisation of dosage and treatment duration in preclinical mouse studies, and the development of novel interventions for skeletal diseases. STATEMENT OF SIGNIFICANCE: Combined mechanical loading and pharmacotherapy have the potential to slow osteoporosis-induced bone loss but current therapies do not target the regions in need of strengthening. We show for the first time spatial region-dependant interactions between PTH and mechanical loading treatment in OVX mouse tibiae, highlighting local regions in the tibia that benefitted from separate and combined treatments. Combined experimental-computational analysis also detailed the lasting period of each treatment per location in the tibia, the extent of positive (or negative) interactions of the combined therapies, and the impact of each treatment on the regulation of bone adaptation spatio-temporally. This approach can be used to create hypothesis about the interactions of different treatments to optimise the design of biomaterials and medical interventions.
Collapse
|
23
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
24
|
Paul GR, Wehrle E, Tourolle DC, Kuhn GA, Müller R. Real-time finite element analysis allows homogenization of tissue scale strains and reduces variance in a mouse defect healing model. Sci Rep 2021; 11:13511. [PMID: 34188165 PMCID: PMC8241979 DOI: 10.1038/s41598-021-92961-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical loading allows both investigation into the mechano-regulation of fracture healing as well as interventions to improve fracture-healing outcomes such as delayed healing or non-unions. However, loading is seldom individualised or even targeted to an effective mechanical stimulus level within the bone tissue. In this study, we use micro-finite element analysis to demonstrate the result of using a constant loading assumption for all mouse femurs in a given group. We then contrast this with the application of an adaptive loading approach, denoted real time Finite Element adaptation, in which micro-computed tomography images provide the basis for micro-FE based simulations and the resulting strains are manipulated and targeted to a reference distribution. Using this approach, we demonstrate that individualised femoral loading leads to a better-specified strain distribution and lower variance in tissue mechanical stimulus across all mice, both longitudinally and cross-sectionally, while making sure that no overloading is occurring leading to refracture of the femur bones.
Collapse
Affiliation(s)
- Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Duncan C Tourolle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
25
|
Miller CJ, Trichilo S, Pickering E, Martelli S, Delisser P, Meakin LB, Pivonka P. Cortical Thickness Adaptive Response to Mechanical Loading Depends on Periosteal Position and Varies Linearly With Loading Magnitude. Front Bioeng Biotechnol 2021; 9:671606. [PMID: 34222215 PMCID: PMC8249932 DOI: 10.3389/fbioe.2021.671606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of the current study was to quantify the local effect of mechanical loading on cortical bone formation response at the periosteal surface using previously obtained μCT data from a mouse tibia mechanical loading study. A novel image analysis algorithm was developed to quantify local cortical thickness changes (ΔCt.Th) along the periosteal surface due to different peak loads (0N ≤ F ≤ 12N) applied to right-neurectomised mature female C57BL/6 mice. Furthermore, beam analysis was performed to analyse the local strain distribution including regions of tensile, compressive, and low strain magnitudes. Student's paired t-test showed that ΔCt.Th in the proximal (25%), proximal/middle (37%), and middle (50%) cross-sections (along the z-axis of tibia) is strongly associated with the peak applied loads. These changes are significant in a majority of periosteal positions, in particular those experiencing high compressive or tensile strains. No association between F and ΔCt.Th was found in regions around the neutral axis. For the most distal cross-section (75%), the association of loading magnitude and ΔCt.Th was not as pronounced as the more proximal cross-sections. Also, bone formation responses along the periosteum did not occur in regions of highest compressive and tensile strains predicted by beam theory. This could be due to complex experimental loading conditions which were not explicitly accounted for in the mechanical analysis. Our results show that the bone formation response depends on the load magnitude and the periosteal position. Bone resorption due to the neurectomy of the loaded tibia occurs throughout the entire cross-sectional region for all investigated cortical sections 25, 37, 50, and 75%. For peak applied loads higher than 4 N, compressive and tensile regions show bone formation; however, regions around the neutral axis show constant resorption. The 50% cross-section showed the most regular ΔCt.Th response with increased loading when compared to 25 and 37% cross-sections. Relative thickness gains of approximately 70, 60, and 55% were observed for F = 12 N in the 25, 37, and 50% cross-sections. ΔCt.Th at selected points of the periosteum follow a linear response with increased peak load; no lazy zone was observed at these positions.
Collapse
Affiliation(s)
- Corey J. Miller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Silvia Trichilo
- St. Vincent’s Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Cheong VS, Kadirkamanathan V, Dall'Ara E. The Role of the Loading Condition in Predictions of Bone Adaptation in a Mouse Tibial Loading Model. Front Bioeng Biotechnol 2021; 9:676867. [PMID: 34178966 PMCID: PMC8225949 DOI: 10.3389/fbioe.2021.676867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The in vivo mouse tibial loading model is used to evaluate the effectiveness of mechanical loading treatment against skeletal diseases. Although studies have correlated bone adaptation with the induced mechanical stimulus, predictions of bone remodeling remained poor, and the interaction between external and physiological loading in engendering bone changes have not been determined. The aim of this study was to determine the effect of passive mechanical loading on the strain distribution in the mouse tibia and its predictions of bone adaptation. Longitudinal micro-computed tomography (micro-CT) imaging was performed over 2 weeks of cyclic loading from weeks 18 to 22 of age, to quantify the shape change, remodeling, and changes in densitometric properties. Micro-CT based finite element analysis coupled with an optimization algorithm for bone remodeling was used to predict bone adaptation under physiological loads, nominal 12N axial load and combined nominal 12N axial load superimposed to the physiological load. The results showed that despite large differences in the strain energy density magnitudes and distributions across the tibial length, the overall accuracy of the model and the spatial match were similar for all evaluated loading conditions. Predictions of densitometric properties were most similar to the experimental data for combined loading, followed closely by physiological loading conditions, despite no significant difference between these two predicted groups. However, all predicted densitometric properties were significantly different for the 12N and the combined loading conditions. The results suggest that computational modeling of bone's adaptive response to passive mechanical loading should include the contribution of daily physiological load.
Collapse
Affiliation(s)
- Vee San Cheong
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Oliviero S, Roberts M, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models. Biomech Model Mechanobiol 2021; 20:941-955. [PMID: 33523337 PMCID: PMC8154847 DOI: 10.1007/s10237-021-01422-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53-0.65, average error of 13-17%). A lower correlation was found for failure load (R2 = 0.21-0.48, average error of 9-15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75-0.80 for stiffness, R2 = 0.55-0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - M Roberts
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
28
|
Cortical bone adaptation to a moderate level of mechanical loading in male Sost deficient mice. Sci Rep 2020; 10:22299. [PMID: 33339872 PMCID: PMC7749116 DOI: 10.1038/s41598-020-79098-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Loss-of-function mutations in the Sost gene lead to high bone mass phenotypes. Pharmacological inhibition of Sost/sclerostin provides a new drug strategy for treating osteoporosis. Questions remain as to how physical activity may affect bone mass under sclerostin inhibition and if that effect differs between males and females. We previously observed in female Sost knockout (KO) mice an enhanced cortical bone formation response to a moderate level of applied loading (900 με at the tibial midshaft). The purpose of the present study was to examine cortical bone adaptation to the same strain level applied to male Sost KO mice. Strain-matched in vivo compressive loading was applied to the tibiae of 10-, 26- and 52-week-old male Sost KO and littermate control (LC) mice. The effect of tibial loading on bone (re)modeling was measured by microCT, 3D time-lapse in vivo morphometry, 2D histomorphometry and gene expression analyses. As expected, Sost deficiency led to high cortical bone mass in 10- and 26-week-old male mice as a result of increased bone formation. However, the enhanced bone formation associated with Sost deficiency did not appear to diminish with skeletal maturation. An increase in bone resorption was observed with skeletal maturation in male LC and Sost KO mice. Two weeks of in vivo loading (900 με at the tibial midshaft) induced only a mild anabolic response in 10- and 26-week-old male mice, independent of Sost deficiency. A decrease in the Wnt inhibitor Dkk1 expression was observed 3 h after loading in 52-week-old Sost KO and LC mice, and an increase in Lef1 expression was observed 8 h after loading in 10-week-old Sost KO mice. The current results suggest that long-term inhibition of sclerostin in male mice does not influence the adaptive response of cortical bone to moderate levels of loading. In contrast with our previous strain-matched study in females showing enhanced bone responses with Sost ablation, these results in males indicate that the influence of Sost deficiency on the cortical bone formation response to a moderate level of loading differs between males and females. Clinical studies examining antibodies to inhibit sclerostin may need to consider that the efficacy of additional physical activity regimens may be sex dependent.
Collapse
|
29
|
Pickering E, Silva MJ, Delisser P, Brodt MD, Gu Y, Pivonka P. Estimation of load conditions and strain distribution for in vivo murine tibia compression loading using experimentally informed finite element models. J Biomech 2020; 115:110140. [PMID: 33348259 DOI: 10.1016/j.jbiomech.2020.110140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
The murine tibia compression model, is the gold standard for studying bone adaptation due to mechanical loading in vivo. Currently, a key limitation of the experimental protocol and associated finite element (FE) models is that the exact load transfer, and consequently the loading conditions on the tibial plateau, is unknown. Often in FE models, load is applied to the tibial plateau based on inferences from micro-computed tomography (μCT). Experimental models often use a single strain gauge to assess the three-dimensional (3D) loading state. However, a single strain gauge is insufficient to validate such FE models. To address this challenge, we develop an experimentally calibrated method for identifying the load application region on the tibial plateau based upon measurements from three strain gauges. To achieve this, axial compression was conducted on mouse tibiae (n=3), with strains gauges on three surfaces. FE simulations were performed to compute the strains at the gauge locations as a function of a variable load location. By minimising the error between experimental and FE strains, the precise load location was identified; this was found to vary between tibia specimens. It was further shown that commonly used FE loading conditions, found in literature, did not replicate the experimental strain distribution, highlighting the importance of load calibration. This work provides critical insights into how load is transferred to the tibial plateau. Importantly, this work develops an experimentally informed technique for loading the tibial plateau in FE models.
Collapse
Affiliation(s)
- Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA; Department of Biomedical Engineering, Washington University, Saint Louis, MO, USA
| | - Peter Delisser
- University of Bristol School of Veterinary Science, Bristol, UK; Veterinary Specialist Services, Brisbane, QLD, Australia
| | - Michael D Brodt
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
30
|
The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A 2020; 117:32251-32259. [PMID: 33288694 PMCID: PMC7768754 DOI: 10.1073/pnas.2011504117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The explanation of how bone senses and adapts to mechanical stimulation still relies on hypotheses. The fluid flow hypothesis claims that a load-induced fluid flow through the lacunocanalicular network can be sensed by osteocytes, which reside within the network structure. We show that considering the network architecture results in a better prediction of bone remodeling than mechanical strain alone. This was done by calculating the fluid flow through the lacunocanalicular network in bone volumes covering the complete cross-sections of mouse tibiae, which underwent controlled in vivo loading. The established relationship between mechanosensitivity and network architecture in individual animals implies possibilities for patient-specific therapies. A new connectomics approach to analyze lacunocanalicular network properties is necessary to understand skeletal mechanobiology. Organisms rely on mechanosensing mechanisms to adapt to changes in their mechanical environment. Fluid-filled network structures not only ensure efficient transport but can also be employed for mechanosensation. The lacunocanalicular network (LCN) is a fluid-filled network structure, which pervades our bones and accommodates a cell network of osteocytes. For the mechanism of mechanosensation, it was hypothesized that load-induced fluid flow results in forces that can be sensed by the cells. We use a controlled in vivo loading experiment on murine tibiae to test this hypothesis, whereby the mechanoresponse was quantified experimentally by in vivo micro-computed tomography (µCT) in terms of formed and resorbed bone volume. By imaging the LCN using confocal microscopy in bone volumes covering the entire cross-section of mouse tibiae and by calculating the fluid flow in the three-dimensional (3D) network, we could perform a direct comparison between predictions based on fluid flow velocity and the experimentally measured mechanoresponse. While local strain distributions estimated by finite-element analysis incorrectly predicts preferred bone formation on the periosteal surface, we demonstrate that additional consideration of the LCN architecture not only corrects this erroneous bias in the prediction but also explains observed differences in the mechanosensitivity between the three investigated mice. We also identified the presence of vascular channels as an important mechanism to locally reduce fluid flow. Flow velocities increased for a convergent network structure where all of the flow is channeled into fewer canaliculi. We conclude that, besides mechanical loading, LCN architecture should be considered as a key determinant of bone adaptation.
Collapse
|
31
|
Oliviero S, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Optimization of the failure criterion in micro-Finite Element models of the mouse tibia for the non-invasive prediction of its failure load in preclinical applications. J Mech Behav Biomed Mater 2020; 113:104190. [PMID: 33191174 DOI: 10.1016/j.jmbbm.2020.104190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023]
Abstract
New treatments against osteoporosis require testing in animal models and the mouse tibia is among the most common studied anatomical sites. In vivo micro-Computed Tomography (microCT) based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experiments. The aim of this study was to evaluate the ability of different microCT-based bone parameters and microFE models to predict tibial structural mechanical properties in compression. Twenty tibiae were scanned at 10.4 μm voxel size and subsequently tested in uniaxial compression at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Standard morphometric parameters were measured from the microCT images. The spatial distribution of bone mineral content (BMC) was evaluated by dividing the tibia into 40 regions. MicroFE models were generated by converting each microCT image into a voxel-based mesh with homogeneous isotropic material properties. Failure load was estimated by using different failure criteria, and the optimized parameters were selected by minimising the errors with respect to experimental measurements. Experimental and predicted stiffness were moderately correlated (R2 = 0.65, error = 14% ± 8%). Normalized failure load was best predicted by microFE models (R2 = 0.81, error = 9% ± 6%). Failure load was not correlated to the morphometric parameters and weakly correlated with some geometrical parameters (R2 < 0.37). In conclusion, microFE models can improve the current estimation of the mouse tibia structural properties and in this study an optimal failure criterion has been defined. Since it is a non-invasive method, this approach can be applied longitudinally for evaluating temporal changes in the bone strength.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK; Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| |
Collapse
|
32
|
Cheong VS, Roberts BC, Kadirkamanathan V, Dall'Ara E. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study. Acta Biomater 2020; 116:302-317. [PMID: 32911105 DOI: 10.1016/j.actbio.2020.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
Osteoporosis disrupts the healthy remodelling process in bone and affects its mechanical properties. Mechanical loading has been shown to be effective in stimulating bone formation to mitigate initial bone loss. However, no study has investigated the effects of repeated mechanical loading, with a pause of one week in between, in the mouse tibia with oestrogen deficiency. This study uses a combined experimental and computational approach, through longitudinal monitoring with micro-computed tomography, to evaluate the effects of loading on bone adaptation in the tibiae of ovariectomised (OVX) C57BL/6 mice from 14 to 22 weeks of age. Micro-FE models coupled with bone adaptation algorithms were used to estimate changes in local tissue strains due to OVX and mechanical loading, and to quantify the relationship between local strain and remodelling. The first in vivo mechanical loading increased apposition, by 50-150%, while resorption decreased by 50-60%. Both endosteal and periosteal resorption increased despite the second mechanical loading, and periosteal resorption was up to 70% higher than that after the first loading. This was found to correlate with an initial decrease in average strain energy density after the first loading, which was lower and more localised after the second loading. Predictions of bone adaptation showed that between 50 and 90% of the load-induced bone apposition is linearly strain driven at the organ-level, but resorption is more biologically driven at the local level. The results imply that a systematic increase in peak load or loading rate may be required to achieve a similar bone adaptation rate in specific regions of interests.
Collapse
|
33
|
Scheuren AC, Kuhn GA, Müller R. Effects of long-term in vivo micro-CT imaging on hallmarks of osteopenia and frailty in aging mice. PLoS One 2020; 15:e0239534. [PMID: 32966306 PMCID: PMC7511008 DOI: 10.1371/journal.pone.0239534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022] Open
Abstract
In vivo micro-CT has already been used to monitor microstructural changes of bone in mice of different ages and in models of age-related diseases such as osteoporosis. However, as aging is accompanied by frailty and subsequent increased sensitivity to external stimuli such as handling and anesthesia, the extent to which longitudinal imaging can be applied in aging studies remains unclear. Consequently, the potential of monitoring individual mice during the entire aging process-from healthy to frail status-has not yet been exploited. In this study, we assessed the effects of long-term in vivo micro-CT imaging-consisting of 11 imaging sessions over 20 weeks-on hallmarks of aging both on a local (i.e., static and dynamic bone morphometry) and systemic (i.e., frailty index (FI) and body weight) level at various stages of the aging process. Furthermore, using a premature aging model (PolgA(D257A/D257A)), we assessed whether these effects differ between genotypes. The 6th caudal vertebrae of 4 groups of mice (PolgA(D257A/D257A) and PolgA(+/+)) were monitored by in vivo micro-CT every 2 weeks. One group was subjected to 11 scans between weeks 20 and 40 of age, whereas the other groups were subjected to 5 scans between weeks 26-34, 32-40 and 40-46, respectively. The long-term monitoring approach showed small but significant changes in the static bone morphometric parameters compared to the other groups. However, no interaction effect between groups and genotype was found, suggesting that PolgA mutation does not render bone more or less susceptible to long-term micro-CT imaging. The differences between groups observed in the static morphometric parameters were less pronounced in the dynamic morphometric parameters. Moreover, the body weight and FI were not affected by more frequent imaging sessions. Finally, we observed that longitudinal designs including baseline measurements at young adult age are more powerful at detecting effects of in vivo micro-CT imaging on hallmarks of aging than cross-sectional comparisons between multiple groups of aged mice subjected to fewer imaging sessions.
Collapse
Affiliation(s)
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Pepe V, Oliviero S, Cristofolini L, Dall'Ara E. Regional Nanoindentation Properties in Different Locations on the Mouse Tibia From C57BL/6 and Balb/C Female Mice. Front Bioeng Biotechnol 2020; 8:478. [PMID: 32500069 PMCID: PMC7243342 DOI: 10.3389/fbioe.2020.00478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
The local spatial heterogeneity of the material properties of the cortical and trabecular bone extracted from the mouse tibia is not well-known. Nevertheless, its characterization is fundamental to be able to study comprehensively the effect of interventions and to generate computational models to predict the bone strength preclinically. The goal of this study was to evaluate the nanoindentation properties of bone tissue extracted from two different mouse strains across the tibia length and in different sectors. Left tibiae were collected from four female mice, two C57BL/6, and two Balb/C mice. Nanoindentations with maximum 6 mN load were performed on different microstructures, regions along the axis of the tibiae, and sectors (379 in total). Reduced modulus (Er) and hardness (H) were computed for each indentation. Trabecular bone of Balb/C mice was 21% stiffer than that of C57BL/6 mice (20.8 ± 4.1 GPa vs. 16.5 ± 7.1 GPa). Moreover, the proximal regions of the bones were 13-36% less stiff than the mid-shaft and distal regions of the same bones. No significant differences were found for the different sectors for E r and H for Balb/C mice. The bone in the medial sector was found to be 8-14% harder and stiffer than the bone in the anterior or posterior sectors for C57BL/6 mice. In conclusion, this study showed that the nanoindentation properties of the mouse tibia are heterogeneous across the tibia length and the trabecular bone properties are different between Balb/C and C57BL/6 mice. These results will help the research community to identify regions where to characterize the mechanical properties of the bone during preclinical optimisation of treatments for skeletal diseases.
Collapse
Affiliation(s)
- Valentina Pepe
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
35
|
Javaheri B, Razi H, Gohin S, Wylie S, Chang YM, Salmon P, Lee PD, Pitsillides AA. Lasting organ-level bone mechanoadaptation is unrelated to local strain. SCIENCE ADVANCES 2020; 6:eaax8301. [PMID: 32181340 PMCID: PMC7060058 DOI: 10.1126/sciadv.aax8301] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Bones adapt to mechanical forces according to strict principles predicting straight shape. Most bones are, however, paradoxically curved. To solve this paradox, we used computed tomography-based, four-dimensional imaging methods and computational analysis to monitor acute and chronic whole-bone shape adaptation and remodeling in vivo. We first confirmed that some acute load-induced structural changes are reversible, adhere to the linear strain magnitude regulation of remodeling activities, and are restricted to bone regions in which marked antiresorptive actions are evident. We make the novel observation that loading exerts significant lasting modifications in tibial shape and mass across extensive bone regions, underpinned by (re)modeling independent of local strain magnitude, occurring at sites where the initial response to load is principally osteogenic. This is the first report to demonstrate that bone loading stimulates nonlinear remodeling responses to strain that culminate in greater curvature adjusted for load predictability without sacrificing strength.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Hajar Razi
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
- Cluster of Excellence, Humboldt University of Berlin, Berlin, Germany
| | - Stephanie Gohin
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Sebastian Wylie
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Yu-Mei Chang
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Phil Salmon
- Bruker microCT, Kartuizersweg 3B, 2550 Kontich, Belgium
| | - Peter D. Lee
- Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
36
|
Main RP, Shefelbine SJ, Meakin LB, Silva MJ, van der Meulen MC, Willie BM. Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology: Implementing the Model and Reporting Results. J Orthop Res 2020; 38:233-252. [PMID: 31508836 PMCID: PMC9344861 DOI: 10.1002/jor.24466] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
In vivo, tibial loading in mice is increasingly used to study bone adaptation and mechanotransduction. To achieve standardized and defined experimental conditions, loading parameters and animal-related factors must be considered when performing in vivo loading studies. In this review, we discuss these loading and animal-related experimental conditions, present methods to assess bone adaptation, and suggest reporting guidelines. This review originated from presentations by each of the authors at the workshop "Developing Best Practices for Mouse Models of In Vivo Loading" during the Preclinical Models Section at the Orthopaedic Research Society Annual Meeting, San Diego, CA, March 2017. Following the meeting, the authors engaged in detailed discussions with consideration of relevant literature. The guidelines and recommendations in this review are provided to help researchers perform in vivo loading experiments in mice, and thus further our knowledge of bone adaptation and the mechanisms involved in mechanotransduction. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:233-252, 2020.
Collapse
Affiliation(s)
- Russell P. Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Corresponding author: Russell Main ()
| | - Sandra J. Shefelbine
- Department of Bioengineering, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Lee B. Meakin
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK
| | - Matthew J. Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - Marjolein C.H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Willie BM, Zimmermann EA, Vitienes I, Main RP, Komarova SV. Bone adaptation: Safety factors and load predictability in shaping skeletal form. Bone 2020; 131:115114. [PMID: 31648080 DOI: 10.1016/j.bone.2019.115114] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 02/09/2023]
Abstract
Much is known about skeletal adaptation in relation to the mechanical functions that bones serve. This includes how bone adapts to mechanical loading during an individual's lifetime as well as over evolutionary time. Although controlled loading in animal models allows us to observe short-term bone adaptation (epigenetic mechanobiology), examining an assemblage of extant vertebrate bones or a group of fossils' bony structures can reveal the combined effects of long-term trends in loading history and the effects of natural selection. In this survey we examine adaptations that take place over both time scales and highlight a few of the extraordinary insights first published by John Currey. First, we provide a historical perspective on bone adaptation control mechanisms, followed by a discussion of safety factors in bone. We then summarize examples of structural- and material-level adaptations and mechanotransduction, and analyze the relationship between these structural- and material-level adaptations observed in situations where loading modes are either predictable or unpredictable. We argue that load predictability is a major consideration for bone adaptation broadly across an evolutionary timescale, but that its importance can also be seen during ontogenetic growth trajectories, which are subject to natural selection as well. Furthermore, we suggest that bones with highly predictable load patterns demonstrate more precise design with lower safety factors, while bones that experience less predictable loads or those that are less capable of repair and adaptation are designed with a higher safety factor. Finally, exposure to rare loading events with high potential costs of failure leads to design of structures with very high safety factor compared to everyday loading experience. Understanding bone adaptations at the structural and material levels, which take place over an individual's lifetime or over evolutionary time has numerous applications in translational and clinical research to understand and treat musculoskeletal diseases, as well as to permit the furthering of human extraterrestrial exploration in environments with altered gravity.
Collapse
Affiliation(s)
- Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada.
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Isabela Vitienes
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Russell P Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Svetlana V Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
38
|
Strain Distribution Evaluation of Rat Tibia under Axial Compressive Load by Combining Strain Gauge Measurement and Finite Element Analysis. Appl Bionics Biomech 2019; 2019:1736763. [PMID: 31871486 PMCID: PMC6913262 DOI: 10.1155/2019/1736763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022] Open
Abstract
This study is aimed at providing an effective method for determining strain-load relationship and at quantifying the strain distribution within the whole tibia under axial compressive load on rats. Rat tibial models with axial compressive load were designed. Strains in three directions (0°, 45°, and 90°) at the proximal shaft of the tibia were measured by using a strain gauge rosette, which was used to calculate the maximum and minimum principal strains. Moreover, the strain at the midshaft of the tibia was measured by a single-element strain gauge. The slopes of the strain-load curves with different peak loads were calculated to assess the stability of the strain gauge measurement. Mechanical environment in the whole tibia by the axial compressive load was quantified using finite element analysis (FEA) based on microcomputed tomography images. The von Mises elastic strain distributions of the whole tibiae were evaluated. Slopes of the strain-load curves showed no significant differences among different peak loads (ANOVA; P > 0.05), indicating that the strain-load relationship obtained from the strain gauge measurement was reasonable and stable. The FEA results corresponded to the experimental results with an error smaller than 15% (paired Student's t-test, P > 0.05), signifying that the FEA can simulate the experiment reasonably. FEA results showed that the von Mises elastic strain was the lowest in the middle and gradually increased to both sides along the lateral direction, with the maximal von Mises elastic strain being observed on the posterior side under the distal tibiofibular synostosis. The method of strain gauge measurements and FEA used in this study can provide a feasible way to obtain the mechanical environment of the tibiae under axial compressive load on the rats and serve as a reference for further exploring the mechanical response of the bone by axial compressive load.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Osteoporosis is an age-related disorder characterized by bone loss and increased fracture susceptibility. Whether this is due to reduced loading in less active elderly individuals or inherent modifications in bone cells is uncertain. We suppose that osteoporosis is nonetheless prima facie evidence for impaired mechanoadaptation; either capacity to accrue new bone declines, or the stimulus for such accrual is absent/can no longer be triggered in the aged. Herein, we provide only sufficient background to enable a focus on recent advances which seek to address such dilemmas. RECENT FINDINGS Recent advances from innovative high-impact loading regimes emphasize the priming of mechanoadaptation in the aged, such that low-to-moderate intensity loading becomes beneficial. These new findings lead us to speculate that aged bone mechanoadaptation is not driven solely by strain magnitude but is instead sensitive to high strain gradients. Impaired mechanoadaptation is a feature of the aged skeleton. Recent advances indicate that novel interventional loading regimes can restore mechanoadaptive capacity, enabling new approaches for retaining bone health in the aged. Innovative exercise paradigms appear to be capable of "hacking" into the osteogenic signal produced by exercise such that low-to-moderate intensity activities may also become more beneficial. Deciphering the underpinning mechanism(s) will also enable new pharmacological intervention for retaining bone health in the aged.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
40
|
Rizzuto E, Peruzzi B, Giudice M, Urciuoli E, Pittella E, Piuzzi E, Musarò A, Del Prete Z. Detection of the Strains Induced in Murine Tibias by Ex Vivo Uniaxial Loading with Different Sensors. SENSORS 2019; 19:s19235109. [PMID: 31766596 PMCID: PMC6928746 DOI: 10.3390/s19235109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
In this paper, the characterization of the main techniques and transducers employed to measure local and global strains induced by uniaxial loading of murine tibiae is presented. Micro strain gauges and digital image correlation (DIC) were tested to measure local strains, while a moving coil motor-based length transducer was employed to measure relative global shortening. Local strain is the crucial parameter to be measured when dealing with bone cell mechanotransduction, so we characterized these techniques in the experimental conditions known to activate cell mechanosensing in vivo. The experimental tests were performed using tibia samples excised from twenty-two C57BL/6 mice. To evaluate measurement repeatability we computed the standard deviation of ten repetitive compressions to the mean value. This value was lower than 3% for micro strain gauges, and in the range of 7%-10% for DIC and the length transducer. The coefficient of variation, i.e., the standard deviation to the mean value, was about 35% for strain gauges and the length transducer, and about 40% for DIC. These results provided a comprehensive characterization of three methodologies for local and global bone strain measurement, suggesting a possible field of application on the basis of their advantages and limitations.
Collapse
Affiliation(s)
- Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4458-5273
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, Children’s Hospital Bambino Gesù, 00146 Rome, Italy; (B.P.); (E.U.)
| | | | - Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Research Area, Children’s Hospital Bambino Gesù, 00146 Rome, Italy; (B.P.); (E.U.)
| | - Erika Pittella
- Department of Information, Telecommunication and Electronic Engineering, Sapienza University of Rome, 00184 Rome, Italy; (E.P.); (E.P.)
| | - Emanuele Piuzzi
- Department of Information, Telecommunication and Electronic Engineering, Sapienza University of Rome, 00184 Rome, Italy; (E.P.); (E.P.)
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161 Rome, Italy;
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| |
Collapse
|
41
|
Albiol L, Cilla M, Pflanz D, Kramer I, Kneissel M, Duda GN, Willie BM, Checa S. Sost deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched in vivo loading experiments in mice. J R Soc Interface 2019; 15:rsif.2018.0012. [PMID: 29669893 DOI: 10.1098/rsif.2018.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Sclerostin, a product of the Sost gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. Sost knockout (KO) mice were examined to gain insight into how long-term Sost deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult Sost KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in Sost KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of Sost KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from Sost KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched Sost KO and LC mice or between young and adult animals within the same genotype.
Collapse
Affiliation(s)
- Laia Albiol
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Myriam Cilla
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain.,Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - David Pflanz
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci Rep 2019; 9:13128. [PMID: 31511559 PMCID: PMC6739374 DOI: 10.1038/s41598-019-49432-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.
Collapse
|
43
|
Cabahug-Zuckerman P, Liu C, Cai C, Mahaffey I, Norman SC, Cole W, Castillo AB. Site-Specific Load-Induced Expansion of Sca-1 +Prrx1 + and Sca-1 -Prrx1 + Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus 2019; 3:e10199. [PMID: 31667455 PMCID: PMC6808224 DOI: 10.1002/jbm4.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023] Open
Abstract
Aging is associated with significant bone loss and increased fracture risk, which has been attributed to a diminished response to anabolic mechanical loading. In adults, skeletal progenitors proliferate and differentiate into bone‐forming osteoblasts in response to increasing mechanical stimuli, though the effects of aging on this response are not well‐understood. Here we show that both adult and aged mice exhibit load‐induced periosteal bone formation, though the response is significantly attenuated with age. We also show that the acute response of adult bone to loading involves expansion of Sca‐1+Prrx1+ and Sca‐1−Prrx1+ cells in the periosteum. On the endosteal surface, loading enhances proliferation of both these cell populations, though the response is delayed by 2 days relative to the periosteal surface. In contrast to the periosteum and endosteum, the marrow does not exhibit increased proliferation of Sca‐1+Prrx1+ cells, but only of Sca‐1−Prrx1+ cells, underscoring fundamental differences in how the stem cell niche in distinct bone envelopes respond to mechanical stimuli. Notably, the proliferative response to loading is absent in aged bone even though there are similar baseline numbers of Prrx1 + cells in the periosteum and endosteum, suggesting that the proliferative capacity of progenitors is attenuated with age, and proliferation of the Sca‐1+Prrx1+ population is critical for load‐induced periosteal bone formation. These findings provide a basis for the development of novel therapeutics targeting these cell populations to enhance osteogenesis for overcoming age‐related bone loss. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pamela Cabahug-Zuckerman
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Chao Liu
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Cinyee Cai
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA
| | - Ian Mahaffey
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Stephanie C Norman
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Whitney Cole
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Alesha B Castillo
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| |
Collapse
|
44
|
Yang H, Xu X, Bullock W, Main RP. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse. J Biomech 2019; 89:85-94. [PMID: 31047696 DOI: 10.1016/j.jbiomech.2019.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, School of Life Science and Bioengineering, Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation Beijing International Base for Scientific and Technological Cooperation, Beijing, China.
| | - Xiaoyu Xu
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA.
| | | | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA.
| |
Collapse
|
45
|
Normal trabecular vertebral bone is formed via rapid transformation of mineralized spicules: A high-resolution 3D ex-vivo murine study. Acta Biomater 2019; 86:429-440. [PMID: 30605771 DOI: 10.1016/j.actbio.2018.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
At birth, mouse vertebrae have a reticular fine spongy morphology, yet in the adult animal they exhibit elaborate trabecular architectures. Here, we characterize the physiological microstructural transformations in growing young female mice of the widely used C57BL/6 strain. Extensive architectural changes lead to the establishment of mature cancellous bone in the spine. Vertebrae were mapped in 3D by high resolution microcomputed tomography (µCT), backed by conventional histology. Three different phases are observed in the natural bony biomaterial: In a prenatal templating phase, early vertebrae are composed of foamy, loosely-packed mineralized spicules. During a consolidation phase in the first 7 days after birth, bone material condenses into struts and forms primitive trabeculae accompanied by a significant (>50%) reduction in bone volume/tissue volume ratio (BV/TV). After day 7, the trabeculae expand, reorient and increase in mineral density. Swift growth ensues such that by day 14 the young lumbar spine exhibits all morphological features observed in the mature animal. The greatly varied micro-morphologies of normal trabecular bone observed in 3D within a short timespan are typical for rodent and presumably for other mammalian forming spines. This suggests that fully structured cancellous bone emerges through rapid post-natal restructuring of a foamy mineralized scaffold. STATEMENT OF SIGNIFICANCE: Cancellous bone develops in stages that are not well documented. Using a mouse model, we provide an observer-independent quantification of normal bone formation in the spine. We find that within 14 days, the cancellous bone transforms in 3 phases from a scaffold of spicules into well organized, fully mineralized trabeculae in a functional spine. Detailed knowledge of the physiological restructuring of mineralized material may help to better understand bone formation and may serve as a blueprint for studies of pharmaceuticals effects, tissue healing and regeneration.
Collapse
|
46
|
Ghasemi SH, Kalantari H, Abdollahikho SS, Nowak AS. Fatigue reliability analysis for medial tibial stress syndrome. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:387-393. [PMID: 30889713 DOI: 10.1016/j.msec.2019.01.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Medial Tibial Stress Syndrome MTSS is frequently diagnosed as a severe clinical issue which occurs due to the cycle loadings (fatigue failure). Since the mechanical properties of the bones are random variables, therefore, there is a need for a probabilistic approach to rationally assess the reliability level of the fatigue failure of the tibia. The main contribution of this paper is to introduce a novel limit state function to determine the fatigue damage state and the reliability index of MTSS based on the different loading and aging conditions. In this study, the tibias of the several people at the different ages are subjected to the fatigue loadings. The load carrying capacities of the considered specimen are determined based on the reliability analysis. Indeed, several 3D finite element analyses are performed to find out the damage states of the tibias. Accordingly, the reliability-based stress analysis is accomplished to localize the most vulnerable zone of the bone. As it was expected, the higher loading cycles associated with the elder bones is related to the lowest fatigue reliability level. Finally, the target reliability level of MTSS is proposed to deliberate the safe level of the loading condition on the tibia in terms of the walking distance.
Collapse
Affiliation(s)
- Seyed Hooman Ghasemi
- Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin 14778-93855, Iran; Department of Civil Engineering, Auburn University, USA.
| | - Hamidreza Kalantari
- Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin 14778-93855, Iran
| | | | | |
Collapse
|
47
|
Lu Y, Zuo D, Li J, He Y. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Med Eng Phys 2018; 63:50-56. [PMID: 30442463 DOI: 10.1016/j.medengphy.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
Finite element (FE) analysis can be used to predict bone mechanical environments that can be used for many important applications, such as the understanding of bone mechano-regulation mechanisms. However, when defining the FE models, uncertainty in bone material properties may lead to marked variations in the predicted mechanical environment. The aim of this study is to investigate the influence of uncertainty in bone material property on the mechanical environment of bone. A heterogeneous FE model of a mouse tibia was created from micro computed tomography images. Axial compression loading was applied, and all possible bone density-modulus relationships were considered through stochastic analysis. The 1st and 3rd principal strains (ε1 and ε3) and the strain energy density (SED) were quantified in the tibial volume of interest (VOI). The bounds of ε1, ε3, and SED were determined by the bounds of the density-modulus relationship; the bone mechanical environment (ε1, ε3, and SED) and the bone density-modulus relationship exhibit the same trend of change; the relative percentage differences caused by bone material uncertainty are up to 28%, 28%, and 21% for ε1, ε3, and SED, respectively. These data provide guidelines on the adoption of bone density-modulus relationship in heterogeneous FE models.
Collapse
Affiliation(s)
- Yongtao Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China; Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Di Zuo
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Junyan Li
- Department of Design Engineering and Mathematics, School of Science and Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
| | - Yiqian He
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China; Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
48
|
Variability in strain distribution in the mice tibia loading model: A preliminary study using digital volume correlation. Med Eng Phys 2018; 62:7-16. [PMID: 30243888 DOI: 10.1016/j.medengphy.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/28/2018] [Accepted: 09/02/2018] [Indexed: 01/27/2023]
Abstract
It is well known that bone has an enormous adaptive capacity to mechanical loadings, and to this extent, several in vivo studies on mouse tibia use established cyclic compressive loading protocols to investigate the effects of mechanical stimuli. In these experiments, the applied axial load is well controlled but the positioning of the hind-limb between the loading endcaps may dramatically affect the strain distribution induced on the tibia. In this study, the full field strain distribution induced by a typical in vivo setup on mouse tibiae was investigated through a combination of in situ compressive testing, µCT scanning and a global digital volume correlation (DVC) approach. The precision of the DVC method and the effect of repositioning on the strain distributions were evaluated. Acceptable uncertainties of the DVC approach for the analysis of loaded tibiae (411 ± 58µɛ) were found for nodal spacing of approximately 50 voxels (520 µm). When pairs of in situ preloaded and loaded images were registered, low variability of the strain distributions within the tibia were seen (range of mean differences in principal strains: 585-1800µɛ). On contrary, larger differences were seen after repositioning (range of mean differences in principal strains: 2500-5500µɛ). To conclude, these preliminary results on thee specimens showed that the DVC approach applied to the mouse tibia can be precise enough to evaluate local strain distributions under loads, and that repositioning of the hind-limb within the testing machine can induce large differences in the strain distributions that should be accounted for when modelling this system.
Collapse
|
49
|
From bed to bench: How in silico medicine can help ageing research. Mech Ageing Dev 2018; 177:103-108. [PMID: 30005915 DOI: 10.1016/j.mad.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
Driven by the raising ethical concerns surrounding animal experimentation, there is a growing interest for non-animal methods, in vitro or in silico technologies that can be used to reduce, refine, and replace animal experimentation. In addition, animal experimentation is being critically revised in regard to its ability to predict clinical outcomes. In this manuscript we describe an initial exploration where a set of in vivo imaging based subject-specific technologies originally developed to predict the risk of femoral strength and hip fracture in osteoporotic patients, were adapted to assess the efficacy of bone drugs pre-clinically on mice. The CT2S technology we developed generates subject-specific models based on Computed Tomography that can separate fractured and non-fractured patients with an accuracy of 82%. When used in mouse experiments the use of in vivo imaging and modelling was found to improve the reproducibility of Bone Mineral Content measurements to a point where up to 63% less mice would be required to achieve the same statistical power of a conventional cross-sectional study. We also speculate about a possible approach where animal-specific and patient-specific models could be used to better translate the observation made on animal models into predictions of response in humans.
Collapse
|
50
|
Oliviero S, Giorgi M, Dall'Ara E. Validation of finite element models of the mouse tibia using digital volume correlation. J Mech Behav Biomed Mater 2018; 86:172-184. [PMID: 29986291 DOI: 10.1016/j.jmbbm.2018.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
The mouse tibia is a common site to investigate bone adaptation. Micro-Finite Element (microFE) models based on micro-Computed Tomography (microCT) images can estimate bone mechanical properties non-invasively but their outputs need to be validated with experiments. Digital Volume Correlation (DVC) can provide experimental measurements of displacements over the whole bone volume. In this study we applied DVC to validate the local predictions of microFE models of the mouse tibia in compression. Six mouse tibiae were stepwise compressed within a microCT system. MicroCT images were acquired in four configurations with applied compression of 0.5 N (preload), 6.5 N, 13.0 N and 19.5 N. Failure load was measured after the last scan. A global DVC algorithm was applied to the microCT images in order to obtain the displacement field over the bone volume. Homogeneous, isotropic linear hexahedral microFE models were generated from the images collected in the preload configuration with boundary conditions interpolated from the DVC displacements at the extremities of the tibia. Experimental displacements from DVC and numerical predictions were compared at corresponding locations in the middle of the bone. Stiffness and strength were also estimated from each model and compared with the experimental measurements. The magnitude of the displacement vectors predicted by microFE models was highly correlated with experimental measurements (R2 >0.82). Higher but still reasonable errors were found for the Cartesian components. The models tended to overestimate local displacements in the longitudinal direction (R2 = 0.69-0.90, slope of the regression line=0.50-0.97). Errors in the prediction of structural mechanical properties were 14% ± 11% for stiffness and 9% ± 9% for strength. In conclusion, the DVC approach has been applied to the validation of microFE models of the mouse tibia. The predictions of the models for both structural and local properties have been found reasonable for most preclinical applications.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| | - M Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| | - E Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| |
Collapse
|