1
|
Wilmers J, Wurmshuber M, Gescher C, Graupp CM, Kiener D, Bargmann S. Unraveling the orientation-dependent mechanics of dental enamel in the red-necked wallaby. Acta Biomater 2024; 185:254-265. [PMID: 38992410 DOI: 10.1016/j.actbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Dental enamels of different species exhibit a wide variety of microstructural patterns that are attractive to mimic in bioinspired composites to simultaneously achieve high stiffness and superior toughness. Non-human enamel types, however, have not yet received the deserved attention and their mechanical behaviour is largely unknown. Using nanoindentation tests and finite element modelling, we investigate the mechanical behaviour of Macropus rufogriseus enamel, revealing a dominating influence of the microstructure on the effective mechanical behaviour and allowing insight into structural dependencies. We find a shallow gradient in stiffness and low degree of anisotropy over the enamel thickness that is attributed to the orientation and size of microstructural features. Most notably, M. rufogriseus's modified radial enamel has a far simpler structural pattern than other species', but achieves great property amplification. It is therefore a very promising template for biomimetic design. STATEMENT OF SIGNIFICANCE: The diversity of dental enamel structures in different species is well documented, but the mechanical behaviour of non-human enamel types is largely unknown. In this work, we investigate the microstructure and structure-dependent mechanical properties of marsupial enamel by nanoindentation and finite element simulations. Combining these methods gives valuable insights into the performance of modified radial enamel structures. Their stiffness and toughness stems from a unique structural design that is far less complex than well-studied human enamel types, which makes it a uniquely suitable template for biomimetic design.
Collapse
Affiliation(s)
- Jana Wilmers
- Chair of Solid Mechanics, University of Wuppertal, Germany; Wuppertal Center for Smart Materials, University of Wuppertal, Germany
| | - Michael Wurmshuber
- Department of Materials Science & Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department Materials Science, Montanuniversität Leoben, Austria
| | | | | | - Daniel Kiener
- Department Materials Science, Montanuniversität Leoben, Austria.
| | - Swantje Bargmann
- Chair of Solid Mechanics, University of Wuppertal, Germany; Wuppertal Center for Smart Materials, University of Wuppertal, Germany
| |
Collapse
|
2
|
Peng J, Xiao H, Lei L, Yang D, Zheng J, Zhou Z. Heterogeneous hardening of enamel surface by occlusal loading: Effect of nanofiber orientation. J Mech Behav Biomed Mater 2022; 130:105221. [DOI: 10.1016/j.jmbbm.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
|
3
|
House KL, Pan L, O'Carroll DM, Xu S. Applications of scanning electron microscopy and focused ion beam milling in dental research. Eur J Oral Sci 2022; 130:e12853. [PMID: 35288994 DOI: 10.1111/eos.12853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The abilities of scanning electron microscopy (SEM) and focused ion beam (FIB) milling for obtaining high-resolution images from top surfaces, cross-sectional surfaces, and even in three dimensions, are becoming increasingly important for imaging and analyzing tooth structures such as enamel and dentin. FIB was originally developed for material research in the semiconductor industry. However, use of SEM/FIB has been growing recently in dental research due to the versatility of dual platform instruments that can be used as a milling device to obtain low-artifact cross-sections of samples combined with high-resolution images. The advent of the SEM/FIB system and accessories may offer access to previously inaccessible length scales for characterizing tooth structures for dental research, opening exciting opportunities to address many central questions in dental research. New discoveries and fundamental breakthroughs in understanding are likely to follow. This review covers the applications, key findings, and future direction of SEM/FIB in dental research in morphology imaging, specimen preparation for transmission electron microscopy (TEM) analysis, and three-dimensional volume imaging using SEM/FIB tomography.
Collapse
Affiliation(s)
- Krystal L House
- Colgate Palmolive Company, Piscataway, New Jersey, USA.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Long Pan
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.,Department of Materials Science and Engineering, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Shiyou Xu
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Qi H, Gao G, Wang H, Ma Y, Wang H, Wu S, Yu J, Wang Q. Mechanical properties, microstructure and chemical composition of naked mole rat incisors. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (i) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (ii) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (iii) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.
Collapse
Affiliation(s)
- Hongyan Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Guixiong Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Ministry of Education, Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Huixin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yunhai Ma
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Hubiao Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Siyang Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Jiangtao Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Qinghua Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Stifler CA, Jakes JE, North JD, Green DR, Weaver JC, Gilbert PUPA. Crystal misorientation correlates with hardness in tooth enamels. Acta Biomater 2021; 120:124-134. [PMID: 32711081 DOI: 10.1016/j.actbio.2020.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023]
Abstract
The multi-scale hierarchical structure of tooth enamel enables it to withstand a lifetime of damage without catastrophic failure. While many previous studies have investigated structure-function relationships in enamel, the effects of crystal misorientation on mechanical performance have not been assessed. To address this issue, in the present study, we review previously published polarization-dependent imaging contrast (PIC) maps of mouse and human enamel, and parrotfish enameloid, in which crystal orientations were measured and displayed in every 60-nm-pixel. By combining those previous results with the PIC maps of sheep enamel presented here we discovered that, in all enamel(oid)s, adjacent crystals are slightly misoriented, with misorientation angles in the 0°-30° range, and mean 2°-8°. Within this limited range, misorientation is positively correlated with literature hardness values, demonstrating an important structure-property relation, not previously identified. At greater misorientation angles 8°30°, this correlation is expected to reverse direction, but data from different non-enamel systems, with more diverse crystal misorientations, are required to determine if and where this occurs. STATEMENT OF SIGNIFICANCE: We identify a structure-function relationship in tooth enamels from different species: crystal misorientation correlates with hardness, contributing to the remarkable mechanical properties of enamel in diverse animals.
Collapse
Affiliation(s)
- Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, United States
| | - Joseph E Jakes
- Forest Biopolymers Science and Engineering, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
| | - Jamie D North
- Department of Chemistry, Carleton College, Northfield, MN 55057, United States
| | - Daniel R Green
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, United States; Departments of Chemistry, Geoscience, Materials Science, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
6
|
Wilmers J, Bargmann S. Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater 2020; 107:1-24. [PMID: 32087326 DOI: 10.1016/j.actbio.2020.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The most important demand of today's high-performance materials is to unite high strength with extreme fracture toughness. The combination of withstanding large forces (strength) and resistance to fracture (toughness), especially preventing catastrophic material failure by cracking, is of utmost importance when it comes to structural applications of these materials. However, these two properties are commonly found to be mutually exclusive: strong materials are brittle and tough materials are soft. In dental enamel, nature has combined both properties with outstanding success - despite a limited number of available constituents. Made up of brittle mineral crystals arranged in a sophisticated hierarchical microstructure, enamel exhibits high stiffness and excellent toughness. Different species exhibit a variety of structural adaptations on varying scales in their dental enamel which optimise not only fracture toughness, but also hardness and abrasion behaviour. Nature's materials still outperform their synthetic counterparts due to these complex structure-property relationships that are not yet fully understood. By analysing structure variations and the underlying mechanical mechanisms systematically, design principles which are the key for the development of advanced synthetic materials uniting high strength and toughness can be formulated. STATEMENT OF SIGNIFICANCE: Dental enamel is a hard protective tissue that combines high strength with an exceptional resistance to catastrophic fracture, properties that in classical materials are commonly found to be mutually exclusive. The biological material is able to outperform its synthetic counterparts due to a sophisticated hierarchical microstructure. Between different species, microstructural adaptations can vary significantly. In this contribution, the different types of dental enamel present in different species are reviewed and connections between microstructure and (mechanical) properties are drawn. By consolidating available information for various species and reviewing it from a materials science point of view, design principles for the development of advanced biomimetic materials uniting high strength and toughness can be formulated.
Collapse
|
7
|
Koldehoff J, Swain MV, Schneider GA. The geometrical structure of interfaces in dental enamel: A FIB-STEM investigation. Acta Biomater 2020; 104:17-27. [PMID: 31917293 DOI: 10.1016/j.actbio.2019.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022]
Abstract
In this study a high resolution structural analysis revealed that enamel prisms are surrounded by an interface that is discontinuous with frequent mineral to mineral contact separated by gaps. This contact manifests either by crystallites bridging the boundary between prismatic and interprismatic enamel or continuous crystallites curving and bridging the interprismatic enamel to the prisms. The geometrical resolution of this TEM investigation of the interfaces is ≤2 nm as a basis for micromechanical models. Within this resolution, contrary to existing structural descriptions of dental enamel structure in materials science literature, here the crystallites themselves are shown to be either in direct contact with each other, sometimes even fusing together, or are separated by gaps. Image analysis revealed that on average only 57 ± 15% of the interface consists of points of no contact between crystallites. This work reveals structural features of dental enamel that contribute important understanding to both the architecture and mechanical properties of this biological material. A new structural model is proposed and the implications for the mechanical properties of dental enamel are discussed. STATEMENT OF SIGNIFICANCE: In this study a high resolution structural analysis, employing focused ion beam and transmission electron microscopy revealed that enamel prisms are surrounded by interfaces that are discontinuous with frequent mineral to mineral contact separated by gaps. Although the interfaces in enamel have been investigated previously, existing studies are lacking in detail considering the geometry and morphology of the interfaces. We think that this result is of great importance when it comes to the understanding of the mechanical properties. In our opinion the concept of soft sheaths is no longer feasible. The resulting observations are included in a new structural model which provides new qualitative insights into the mechanical behavior. Existing analytical models were applied to simulate the new geometrical structure.
Collapse
|
8
|
Thompson VP. The tooth: An analogue for biomimetic materials design and processing. Dent Mater 2020; 36:25-42. [DOI: 10.1016/j.dental.2019.08.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023]
|
9
|
Abstract
Enamel is the hardest and most resilient tissue in the human body. Enamel includes morphologically aligned, parallel, ∼50 nm wide, microns-long nanocrystals, bundled either into 5-μm-wide rods or their space-filling interrod. The orientation of enamel crystals, however, is poorly understood. Here we show that the crystalline c-axes are homogenously oriented in interrod crystals across most of the enamel layer thickness. Within each rod crystals are not co-oriented with one another or with the long axis of the rod, as previously assumed: the c-axes of adjacent nanocrystals are most frequently mis-oriented by 1°-30°, and this orientation within each rod gradually changes, with an overall angle spread that is never zero, but varies between 30°-90° within one rod. Molecular dynamics simulations demonstrate that the observed mis-orientations of adjacent crystals induce crack deflection. This toughening mechanism contributes to the unique resilience of enamel, which lasts a lifetime under extreme physical and chemical challenges.
Collapse
|
10
|
Li QZ, Wang CY, Zheng LJ, Zhao DN, Zeng CF. Machinability of enamel under grinding process using diamond dental burrs. Proc Inst Mech Eng H 2019; 233:1151-1164. [PMID: 31532324 DOI: 10.1177/0954411919873804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Enamel grinding is a critical dental surgery process. However, tooth damage during the process remains a significant problem. Grinding forces, burr wear, and surface quality were characterised in relation to grinding speed, enamel orientation, grinding depth, and burr grit grain size. Results indicated that enamel rod orientation, grinding depth, and grinding speed critically affected enamel grinding. Occlusal surface grinding resulted in significantly higher normal forces, surface roughness, and marginally greater tangential forces than axial surface grinding. Damage to enamel machined surfaces indicated the significant impact of diamond grit size and rod orientation. Burr wear was primarily diamond grit peeling off and breakage. Surface roughness of axial and occlusal sections was largely influenced by grinding speed and diamond grit size. Improving the surface quality of machined enamel surfaces could be realised using fine burrs, reducing the grinding speed and grinding depth, and adjusting the feed direction vertical to the rod orientation. Enamel surface quality and roughness could be improved by reducing brittle failure and circular runout during the grinding process, respectively.
Collapse
Affiliation(s)
- Quan-Zhou Li
- Guangdong University of Technology, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Cheng-Yong Wang
- Guangdong University of Technology, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Li-Juan Zheng
- Guangdong University of Technology, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Dan-Na Zhao
- Guangdong University of Technology, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Chao-Feng Zeng
- Guangdong Original Point Intelligent Technology Co., Foshan, China
| |
Collapse
|
11
|
Yan Y, Nakatani A. Unlocalized crack initiation and propagation in staggered biomaterials. J Biomech 2019; 86:183-192. [PMID: 30851975 DOI: 10.1016/j.jbiomech.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022]
Abstract
Many types of tissues in living organisms exhibit a combination of different properties to fulfil their mechanical functions in complex environments. Nacre with more than 90% brittle and hard phase and a little protein matrix, exhibits high strength and toughness, which is difficult to achieve in artificial materials. Researchers have shown that the toughness of nacre is related to the cracking process. Most of them, however, assume an obvious pre-existing crack on the model and the initiation of the microscopical pre-existing crack is not considered yet. Based on fracture mechanics with the cohesive zone model, we reveal the mechanism of the crack initiation and propagation pattern in staggered biomaterials without any pre-existing crack. The simulation result shows that there are two crack propagation modes: localized mode and unlocalized mode. A crack initiates and propagates in a small area in the localized mode, while cracks initiate at different points and propagate in various paths in the unlocalized mode. The crack initiation mechanism from the intrinsic properties of the material is clarified using energy based stability analysis. The result shows that the shear interfacial mechanism significantly delays the crack initiation.
Collapse
Affiliation(s)
- Yi Yan
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Nakatani
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Liu Z, Weng Z, Zhai ZF, Huang N, Zhang ZJ, Tan J, Jiang C, Jiao D, Tan G, Zhang J, Jiang X, Zhang Z, Ritchie RO. Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomater 2018; 81:267-277. [PMID: 30273740 DOI: 10.1016/j.actbio.2018.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
The tooth enamel of vertebrates comprises a hyper-mineralized bioceramic, but is distinguished by an exceptional durability to resist impact and wear throughout the lifetime of organisms; however, enamels exhibit a low resistance to the initiation of large-scale cracks comparable to that of geological minerals based on fracture mechanics. Here we reveal that the tooth enamel, specifically from the giant panda, is capable of developing durability through counteracting the early stage of damage by partially recovering its innate geometry and structure at nano- to micro- length-scales autonomously. Such an attribute results essentially from the unique architecture of tooth enamel, specifically the vertical alignment of nano-scale mineral fibers and micro-scale prisms within a water-responsive organic-rich matrix, and can lead to a decrease in the dimension of indent damage in enamel introduced by indentation. Hydration plays an effective role in promoting the recovery process and improving the indentation fracture toughness of enamel (by ∼73%), at a minor cost of micro-hardness (by ∼5%), as compared to the dehydrated state. The nano-scale mechanisms that are responsible for the recovery deformation, specifically the reorientation and rearrangement of mineral fragments and the inter- and intra-prismatic sliding between constituents that are closely related to the viscoelasticity of organic matrix, are examined and analyzed with respect to the structure of tooth enamel. Our study sheds new light on the strategies underlying Nature's design of durable ceramics which could be translated into man-made systems in developing high-performance ceramic materials. STATEMENT OF SIGNIFICANCE: Tooth enamel plays a critical role in the function of teeth by providing a hard surface layer to resist wear/impact throughout the lifetime of organisms; however, such enamel exhibits a remarkably low resistance to the initiation of large-scale cracks, of hundreds of micrometers or more, comparable to that of geological minerals. Here we reveal that tooth enamel, specifically that of the giant panda, is capable of partially recovering its geometry and structure to counteract the early stages of damage at nano- to micro-scale dimensions autonomously. Such an attribute results essentially from the architecture of enamel but is markedly enhanced by hydration. Our work discerns a series of mechanisms that lead to the deformation and recovery of enamel and identifies a unique source of durability in the enamel to accomplish this function. The ingenious design of tooth enamel may inspire the development of new durable ceramic materials in man-made systems.
Collapse
Affiliation(s)
- Zengqian Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zhaoyong Weng
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhao-Feng Zhai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Nan Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhen-Jun Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jun Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanbin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Da Jiao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guoqi Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; State Key Laboratory of Advanced Non-ferrous Materials, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhefeng Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
DENG QIANG, ZONG ZHIFANG, NING ZHENWU, ZHENG JING, LIU JIANTAO, ZHOU ZHONGRONG. A COMPUTATIONAL STRATEGY TO EXAMINE THE PROFILE EFFECTS OF MICROPRISM REGIONS ON THE OVERALL ANISOTROPY OF HUMAN ENAMELS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, our attention is mainly on elaborating a computational strategy to effectively predict the influence of prism profiles on the overall anisotropic property of human enamels (HEs). At first, two distinct schemes are developed separately with the aid of the polynomial fitting technique and the general power functions to mathematically describe the practical irregular and simplified regular profiles of enamel prisms. Hereafter, two parametric piecewise formulas, which facilitate the definition of anisotropic material properties of finite elements at different locations and make the numerical simulation of HE microstructures consisting of irregularly shaped prisms feasible, are presented to describe the orientation of hydroxyapatite (HAP) crystallites embedded in microprisms. The effective anisotropic moduli over a representative unit cell (RUC) under the periodic displacement constraint is concisely introduced according to the micromechanics, and a computational strategy is established to calculate these moduli numerically. Finally, the evaluations in the open literature are employed to demonstrate the validity of the elaborated computational strategy, and more investigations are conducted and yield the conclusions such that the material property of the inter-prism regions as well as the prism shapes plays a crucial role in determining the overall anisotropy of HEs.
Collapse
Affiliation(s)
- QIANG DENG
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - ZHIFANG ZONG
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - ZHENWU NING
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - JING ZHENG
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - JIANTAO LIU
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Laboratoire de Mécanique d’Evry, Université d’Evry, 40 rue du Pelvoux, Évry 91020, France
| | - ZHONGRONG ZHOU
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
14
|
Leal NM, Silva JL, Benigno MIM, Bemerguy EA, Meira JB, Ballester RY. How mechanical stresses modulate enamel demineralization in non-carious cervical lesions? J Mech Behav Biomed Mater 2017; 66:50-57. [DOI: 10.1016/j.jmbbm.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
15
|
Ma S, Scheider I, Bargmann S. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. J Mech Behav Biomed Mater 2016; 62:515-533. [DOI: 10.1016/j.jmbbm.2016.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/04/2023]
|
16
|
La Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, Cairney J. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. SCIENCE ADVANCES 2016; 2:e1601145. [PMID: 27617291 PMCID: PMC5014466 DOI: 10.1126/sciadv.1601145] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/09/2016] [Indexed: 05/19/2023]
Abstract
Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg(2+) ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth.
Collapse
Affiliation(s)
- Alexandre La Fontaine
- School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexander Zavgorodniy
- Faculty of Dentistry, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Dental Research, Westmead Centre for Oral Health, Sydney, New South Wales 2145, Australia
| | - Howgwei Liu
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rongkun Zheng
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Swain
- Faculty of Dentistry, University of Sydney, Sydney, New South Wales 2006, Australia
- Faculty of Dentistry, Kuwait University, P. O. Box 24923, Safat 13110, Kuwait
| | - Julie Cairney
- School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia
- Corresponding author.
| |
Collapse
|
17
|
Wren AW. Vitreous Materials for Dental Restoration and Reconstruction. BIOCOMPATIBLE GLASSES 2016. [DOI: 10.1007/978-3-319-44249-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|