1
|
Liu H, Zhan L, Zhao J, Zhang S, Yin H, Hou Z, Huang G. Paper Spray Ionization Mass Spectrometry Coupled with Paper-Based Three-Dimensional Tumor Model for Rapid Metabolic Gradient Profiling. Anal Chem 2024; 96:16706-16714. [PMID: 39387545 DOI: 10.1021/acs.analchem.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME), especially with its complicated metabolic characteristics, will dynamically affect the proliferation, migration, and drug response of tumor cells. Rapid metabolic analysis brings out a deeper understanding of the TME, while the susceptibility and environmental dependence of metabolites extremely hinder real-time metabolic profiling since the TME is easily disrupted. Here, we directly integrated paper spray ionization mass spectrometry with a paper-based three-dimensional (3D) tumor model, realizing the rapid capture of metabolic gradients. The entire procedure, from sample preparation to mass spectrometry detection, took less than 4 min, which was able to provide metabolic results close to real time and contributed to understanding the real metabolic processes. At present, our method successfully detected 160 metabolites; notably, over 40 significantly gradient metabolites were revealed across the six layers of the paper-based 3D tumor model. At least 22 gradient metabolites were reported to be associated with cell viability. This strategy was powerful enough to rapidly profile metabolic gradients of a paper-based 3D tumor model for revealing cell viability changes from a metabolomics perspective.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jia Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Yin
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
2
|
Guo F, Jooken S, Ahmad A, Yu W, Deschaume O, Thielemans W, Bartic C. Optically Active, Paper-Based Scaffolds for 3D Cardiac Pacing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53449-53459. [PMID: 39332816 PMCID: PMC11472259 DOI: 10.1021/acsami.4c10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
In this work, we report the design and fabrication of a light-addressable, paper-based nanocomposite scaffold for optical pacing and read-out of in vitro grown cardiac tissue. The scaffold consists of paper cellulose microfibers functionalized with gold nanorods (GNRs) and semiconductor quantum dots (QDs), embedded in a cell-permissive collagen matrix. The GNRs enable cardiomyocyte activity modulation through local temperature gradients induced by modulated near-infrared (NIR) laser illumination, with the local temperature changes reported by temperature-dependent QD photoluminescence (PL). The micrometer-sized paper fibers promote the tubular organization of HL-1 cardiac muscle cells, while the NIR plasmonic stimulation modulates reversibly their activity. Given the nanoscale spatial resolution and facile fabrication, paper-based nanocomposite scaffolds with NIR modulation offer excellent alternatives to electrode-based or optogenetic methods for cell activity modulation, at the single cell level, and are compatible with 3D tissue constructs. Such paper-based optical platforms can provide new possibilities for the development of in vitro drug screening assays and heart disease modeling.
Collapse
Affiliation(s)
- Fanglei Guo
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Stijn Jooken
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Amin Ahmad
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Wei Yu
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable
Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Carmen Bartic
- Laboratory
for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Zhang C, Hua W, Mitchell K, Raymond L, Delzendehrooy F, Wen L, Do C, Chen J, Yang Y, Linke G, Zhang Z, Krishnan MA, Kuss M, Coulter R, Bandala E, Liao Y, Duan B, Zhao D, Chai G, Jin Y. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc Natl Acad Sci U S A 2024; 121:e2313464121. [PMID: 38346211 PMCID: PMC10907305 DOI: 10.1073/pnas.2313464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Fatemeh Delzendehrooy
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, NV89557
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6475
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN37830
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, NV89557
| | - Gabe Linke
- Three-Dimensional Advanced Visualization Laboratory, Department of Pediatric Radiology, Children’s Hospital & Medical Center, Omaha, NE68114
| | - Zhengyi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Ryan Coulter
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Erick Bandala
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Yiliang Liao
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guangrui Chai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| |
Collapse
|
5
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
6
|
Poddar D, Jain P. Surface modification of three-dimensional porous polymeric scaffolds in tissue engineering applications: A focus review on physical modifications methods. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2061863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
7
|
Sinha A, Basu M, Chandna P. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:109-158. [PMID: 35033281 DOI: 10.1016/bs.pmbts.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microfluidic industry has evolved through years with acquired scientific knowledge from different, and already developed industries. Consequently, a wide range of materials like silicon from the electronic industry to all the way, silicone, from the chemical engineering industry, has been spotted to solve similar challenges. Although a typical microfluidic chip, fabricated from glass or polymer substrates offers definite benefits, however, paper-based microfluidic analytical devices (μPADs) possess numerous special benefits for practical implementation at a lower price. Owing to these features, in recent years, paper microfluidics has drawn immense interest from researchers in industry and academia alike. These devices have wider applications with advantages like lower cost, speedy detection, user-easiness, biocompatibility, sensitivity, and specificity etc. when compared to other microfluidic devices. Therefore, these sensitive but affordable devices fit themselves into point-of-care (POC) testing with features in demand like natural disposability, situational flexibility, and the capability to store and analyze the target at the point of requirement. Gradually, advancements in fabrication technologies, assay development techniques, and improved packaging capabilities, have contributed significantly to the real-time identification and health investigation through paper microfluidics; however, the growth has not been limited to the biomedical field; industries like electronics, energy storage and many more have expanded substantially. Here, we represent an overall state of the paper-based microfluidic technology by covering the fundamentals, working principles, different fabrication procedures, applications for various needs and then to make things more practical, the real-life scenario and practical challenges involved in launching a device into the market have been revealed. To conclude, recent contribution of μPADs in the 2020 pandemic and potential future possibilities have been reviewed.
Collapse
|
8
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
9
|
Huang K, Castiaux A, Podicheti R, Rusch DB, Martin RS, Baker LA. A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-brain Barrier Model. SMALL METHODS 2021; 5:2100592. [PMID: 34541301 PMCID: PMC8445000 DOI: 10.1002/smtd.202100592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/16/2023]
Abstract
The blood brain barrier (BBB) protects the central nervous system from toxins and pathogens in the blood by regulating permeation of molecules through the barrier interface. In vitro BBB models described to date reproduce some aspects of BBB functionality, but also suffer from incomplete phenotypic expression of brain endothelial traits, difficulty in reproducibility and fabrication, or overall cost. To address these limitations, we describe a three-dimensional (3D) BBB model based on a hybrid paper/nanofiber scaffold. The cell culture platform utilizes lens paper as a framework to accommodate 3D culture of astrocytes. An electrospun nanofiber layer is coated onto one face of the paper to mimic the basement membrane and support growth of an organized two-dimensional layer of endothelial cells (ECs). Human induced pluripotent stem cell-derived ECs and astrocytes are co-cultured to develop a human BBB model. Morphological and spatial organization of model are validated with confocal microscopy. Measurements of transendothelial resistance and permeability demonstrate the BBB model develops a high-quality barrier and responds to hyperosmolar treatments. RNA-sequencing shows introduction of astrocytes both regulates EC tight junction proteins and improves endothelial phenotypes related to vasculogenesis. This model shows promise as a model platform for future in vitro studies of the BBB.
Collapse
Affiliation(s)
- Kaixiang Huang
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Andre Castiaux
- Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, Indiana 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, Indiana 47405, USA
| | - R Scott Martin
- Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Lane A Baker
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
10
|
Morrison E, Suvarnapathaki S, Blake L, Camci-Unal G. Unconventional biomaterials for cardiovascular tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Fu J, Li XB, Wang LX, Lv XH, Lu Z, Wang F, Xia Q, Yu L, Li CM. One-Step Dip-Coating-Fabricated Core-Shell Silk Fibroin Rice Paper Fibrous Scaffolds for 3D Tumor Spheroid Formation. ACS APPLIED BIO MATERIALS 2020; 3:7462-7471. [PMID: 35019488 DOI: 10.1021/acsabm.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioscaffolds are important substrates for supporting three-dimensional (3D) cell cultures. Silk fibroin (SF) is an attractive biomaterial in tissue engineering because of its good biocompatibility and mechanical properties. Electrospinning is one of the most often used approaches to fabricate SF fibrous scaffolds; yet, this technique still faces many challenges, such as low yield, residual organic solvents, limited extensibility of fibers, and a lack of spatial control over pore size. To circumvent these limitations, a core-shell SF on rice paper (SF@RP) fibrous scaffold was fabricated using a mild one-step dip-coating method. The cellulose fiber matrix of RP is the physical basis of the 3D scaffold, whereas the SF coating on the cellulose fiber controls the adhesion/spreading of the cells. The results indicated that by tuning the secondary structure of SF on the surface of a SF@RP scaffold, the cell behavior on SF@RP could be tuned. Tumor spheroids can be formed on SF@RP scaffolds with a dominant random secondary structure, in contrast to cells adhering and spreading on SF@RP scaffolds with a higher ratio of β-sheet secondary structures. Direct culturing of breast cancer MDA-MB-231 and MCF-7, lung cancer A549, prostate cancer DU145, and liver cancer HepG2 cells could spontaneously lead to corresponding tumor spheroids on SF@RP. In addition, the physiological characteristics of HepG2 tumor spheroids were investigated, and the results showed that compared with HepG2 monolayer cells, CYP3A4, CYP1A1, and albumin gene expression levels in HepG2 cell spheres formed on SF@RP scaffolds were significantly higher. Moreover, these spheroids showed higher drug resistance. In summary, these SF@RP scaffolds prepared by the dip-coating method are biocompatible substrates for cell culture, especially for tumor cell spheroid formation.
Collapse
Affiliation(s)
- Jingjing Fu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Bai Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Lin Xiang Wang
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Hui Lv
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Institute of Advanced Cross-field Science, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Tang R, Liu L, Li M, Yao X, Yang Y, Zhang S, Li F. Transparent Microcrystalline Cellulose/Polyvinyl Alcohol Paper as a New Platform for Three-Dimensional Cell Culture. Anal Chem 2020; 92:14219-14227. [PMID: 32962346 DOI: 10.1021/acs.analchem.0c03458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multilayered and stacked cellulose paper has emerged as a promising platform for construction of three-dimensional (3D) cell culture because of its low cost, good biocompatibility, and high porosity. However, its poor light transmission makes it challenging to directly and clearly monitor cell behaviors (e.g., growth and proliferation) on the paper-based platform using an optical microscope. In this work, we developed a transparent microcrystalline cellulose/polyvinyl alcohol (MCC/PVA) paper with irregular pores through dissolution and regeneration of microcrystalline nanocellulose, addition of a porogen reagent (NaCl), and subsequently dipping in PVA solutions. The transparent MCC paper displays high porosity (up to 90%), adjustable pore size (between 23 and 46 μm), large thickness (from 315 to 436 μm), and high light transmission under water (>95%). Through further modification of the transparent MCC paper with PVA, the obtained transparent MCC/PVA paper shows enhanced mechanical properties (dry and wet strengths), good hydrophilicity (with a contact angle of 70.8°), and improved biocompatibility (cell viability up to 90%). By stacking and destacking multiple layers of the transparent MCC/PVA paper, it has been used for both two-dimensional and three-dimensional cell culture platforms. The transparent MCC/PVA paper under water enables both direct observation of cell morphology by an optical microscope via naked eyes and fluorescence microscope after staining. We envision that the developed transparent MCC/PVA paper holds great potential for future applications in various bioanalytical and biomedical fields, such as drug screening, tissue engineering, and organ-on-chips.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lina Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Min Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xue Yao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yaowei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Fu SX, Zuo P, Ye BC. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening. Biotechnol J 2020; 16:e2000126. [PMID: 33460221 DOI: 10.1002/biot.202000126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Paper is increasingly recognized as a portable substrate for cell culture, due to its low-cost, flexible, and special porous property, which provides a native cellular 3D microenvironment. Therefore, paper-based microfluidics has been developed for cell culture and biomedical analysis. However, the inability of continuous medium supply limits the wide application of paper devices for cell culture. Herein, a paper-based microfluidic device is developed with novel folded paper strips as wick-like structure, which is used for medium self-driven perfusion. The paper with patterns of hydrophilic channel, culture areas, and hydrophobic barrier could be easily fabricated through wax-printing. After printing, the hydrophilic paper strip at the periphery of the lower layer is then folded at 90° and extended into the medium container for continuous automatic supply of medium to the cell culture area. Tumor cells cultured in the paper device are tested for anti-cancer drug screening. Visualized cell viability and chemical sensitivity testing can be achieved by colorimetry combined with simple smartphone imaging, effectively reducing precision instrument dependence. The wick paper-based microfluidic device for cell culture endows the method the advantages of lower cost, ease-of-operation, miniaturization, and shows a great potential for large-scale cell culture, antibody drug production, and efficient screening.
Collapse
Affiliation(s)
- Shu-Xia Fu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Peng Zuo
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Impedimetric melanoma invasion assay device using a simple paper membrane and stencil-printed electrode on PMMA substrate. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Ding C, Chen X, Kang Q, Yan X. Biomedical Application of Functional Materials in Organ-on-a-Chip. Front Bioeng Biotechnol 2020; 8:823. [PMID: 32793573 PMCID: PMC7387427 DOI: 10.3389/fbioe.2020.00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The organ-on-a-chip (OOC) technology has been utilized in a lot of biomedical fields such as fundamental physiological and pharmacological researches. Various materials have been introduced in OOC and can be broadly classified into inorganic, organic, and hybrid materials. Although PDMS continues to be the preferred material for laboratory research, materials for OOC are constantly evolving and progressing, and have promoted the development of OOC. This mini review provides a summary of the various type of materials for OOC systems, focusing on the progress of materials and related fabrication technologies within the last 5 years. The advantages and drawbacks of these materials in particular applications are discussed. In addition, future perspectives and challenges are also discussed.
Collapse
Affiliation(s)
- Chizhu Ding
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiang Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Qinshu Kang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
16
|
Tie L, Răileanu M, Bacalum M, Codita I, Negrea ȘM, Caracoti CȘ, Drăgulescu EC, Campu A, Astilean S, Focsan M. Versatile Polypeptide-Functionalized Plasmonic Paper as Synergistic Biocompatible and Antimicrobial Nanoplatform. Molecules 2020; 25:E3182. [PMID: 32668589 PMCID: PMC7397136 DOI: 10.3390/molecules25143182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, thanks to nanotechnological progress, which itself guides us more and more closely toward not only the efficient design of innovative nanomaterials or nanostructures, but to the improvement of their functionality, we benefit from an important asset in the battle against pathogenic illnesses. Herein, we report a versatile biocompatible plasmonic nanoplatform based on a Whatman paper incorporating positively-charged gold nanospherical particles via the immersion approach. The morphological characterization of the as-engineered-plasmonic paper was examined by SEM (scanning electron microscopy) and HRTEM (high-resolution transmission electron microscopy) investigations, while its surface chemical modification with a synthetic polypeptide, specifically RRWHRWWRR-NH2 (P2), was proved by monitoring the plasmonic response of loaded gold nanospheres and the emission signal of P2 via fluorescence spectroscopy. The as-functionalized plasmonic paper is non-cytotoxic towards BJ fibroblast human cells at bactericidal concentrations. Finally, the antimicrobial activity of the P2-functionalized plasmonic paper on both planktonic bacteria and biofilms was tested against two reference strains: Gram-positive Bacteria, i.e., Staphylococcus aureus and the Gram-negative Bacteria, i.e., Escherichia coli, determining microbial inhibition of up to 100% for planktonic bacteria. In line with the above presented nanoplatform's proper design, followed by their functionalization with active antimicrobial peptides, new roads can be open for determining antibiotic-free treatments against different relevant pathogens.
Collapse
Affiliation(s)
- Leopold Tie
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, 400271 Cluj-Napoca, Romania; (L.T.); (A.C.); (S.A.)
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, 400084 Cluj-Napoca, Romania
| | - Mina Răileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.R.); (M.B.)
- Department of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.R.); (M.B.)
| | - Irina Codita
- Cantacuzino National Medical-Military Institute for Research-Development, Splaiul Independenței 103, 050096 Bucharest, Romania; (I.C.); (S.M.N.); (C.S.C.); (E.-C.D.)
| | - Ștefania Mădălina Negrea
- Cantacuzino National Medical-Military Institute for Research-Development, Splaiul Independenței 103, 050096 Bucharest, Romania; (I.C.); (S.M.N.); (C.S.C.); (E.-C.D.)
| | - Costin Ștefan Caracoti
- Cantacuzino National Medical-Military Institute for Research-Development, Splaiul Independenței 103, 050096 Bucharest, Romania; (I.C.); (S.M.N.); (C.S.C.); (E.-C.D.)
| | - Elena-Carmina Drăgulescu
- Cantacuzino National Medical-Military Institute for Research-Development, Splaiul Independenței 103, 050096 Bucharest, Romania; (I.C.); (S.M.N.); (C.S.C.); (E.-C.D.)
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, 400271 Cluj-Napoca, Romania; (L.T.); (A.C.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, 400271 Cluj-Napoca, Romania; (L.T.); (A.C.); (S.A.)
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, 400084 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, 400271 Cluj-Napoca, Romania; (L.T.); (A.C.); (S.A.)
| |
Collapse
|
17
|
Agarwal T, Borrelli MR, Makvandi P, Ashrafizadeh M, Maiti TK. Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS APPLIED BIO MATERIALS 2020; 3:3956-3974. [DOI: 10.1021/acsabm.0c00558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mimi R. Borrelli
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples 80078, Italy
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-16471, Iran
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
18
|
Jiang H, Yang J, Wan K, Jiang D, Jin C. Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection. ACS Sens 2020; 5:1325-1335. [PMID: 32274922 DOI: 10.1021/acssensors.9b02508] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive detection of lipopolysaccharides (LPSs), which are present on the outer wall of Gram-negative bacteria, is important to reflect the degree of bacterial contamination in food. For indirect assessment of the LPS content, a miniaturized electrochemical cell sensor consisting of a screen-printed paper electrode, a three-dimensional cells-in-gels-in-paper culture system, and a conductive jacket device was developed for in situ detection of nitric oxide released from LPS-treated mouse macrophage cells (Raw264.7). Nafion/polypyrrole/graphene oxide with excellent selectivity, high conductivity, and good biocompatibility functionalized on the working electrode via electrochemical polymerization could enhance sensing. Raw264.7 cells encapsulated in the alginate hydrogel were immobilized on a Nafion/polypyrrole/graphene oxide/screen-printed carbon electrode in paper fibers as a biorecognition element. Differential impulse voltammetry was employed to record the current signal as-influenced by LPS. Results indicated that LPS from Salmonella enterica serotype Enteritidis caused a significant increase in peak current, varying from 1 × 10-2 to 1 × 104 ng/mL, dose-dependently. This assay had a detection limit of 3.5 × 10-3 ng/mL with a linear detection range of 1 × 10-2 to 3 ng/mL. These results were confirmed by analysis of nitric oxide released from Raw264.7 via the Griess method. The miniaturized sensor was ultimately applied to detect LPSs in fruit juice samples. The results indicated that the method exhibited high recovery and relative standard deviation lower than 2.65% and LPSs in samples contaminated with 102-105 CFU/mL bacteria could be detected, which proved the practical value of the sensor. Thus, a novel, low-cost, and highly sensitive approach for LPS detection was developed, providing a method to assess Gram-negative bacteria contamination in food.
Collapse
Affiliation(s)
- Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Kai Wan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, and Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Changhai Jin
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| |
Collapse
|
19
|
Li H, Cheng F, Robledo-Lara JA, Liao J, Wang Z, Zhang YS. Fabrication of paper-based devices for in vitro tissue modeling. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Naik P, Jaitpal S, Paul D. The Resurgence of Paperfluidics: A new technology for cell, DNA, and blood analysis. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Rosqvist E, Niemelä E, Frisk J, Öblom H, Koppolu R, Abdelkader H, Soto Véliz D, Mennillo M, Venu AP, Ihalainen P, Aubert M, Sandler N, Wilén CE, Toivakka M, Eriksson JE, Österbacka R, Peltonen J. A low-cost paper-based platform for fast and reliable screening of cellular interactions with materials. J Mater Chem B 2020; 8:1146-1156. [PMID: 32011620 DOI: 10.1039/c9tb01958h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paper-based platform was developed and tested for studies on basic cell culture, material biocompatibility, and activity of pharmaceuticals in order to provide a reliable, robust and low-cost cell study platform. It is based upon a paper or paperboard support, with a nanostructured latex coating to provide an enhanced cell growth and sufficient barrier properties. Wetting is limited to regions of interest using a flexographically printed hydrophobic polydimethylsiloxane layer with circular non-print areas. The nanostructured coating can be substituted for another coating of interest, or the regions of interest functionalized with a material to be studied. The platform is fully up-scalable, being produced with roll-to-roll rod coating, flexographic and inkjet printing methods. Results show that the platform efficiency is comparable to multi-well plates in colorimetric assays in three separate studies: a cell culture study, a biocompatibility study, and a drug screening study. The color intensity is quantified by using a common office scanner or an imaging device and the data is analyzed by a custom computer software without the need for expensive screening or analysis equipment.
Collapse
Affiliation(s)
- E Rosqvist
- Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland.
| | - E Niemelä
- Laboratory of Cell Biology, Center for Functional Materials, Åbo Akademi University, Bio City, Artillerigatan 6B, 20521 Åbo, Finland and Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Åbo, Finland
| | - J Frisk
- Laboratory of Physics, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland
| | - H Öblom
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 20520 Åbo, Finland
| | - R Koppolu
- Laboratory of Paper Coating, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland
| | - H Abdelkader
- Laboratory of Cell Biology, Center for Functional Materials, Åbo Akademi University, Bio City, Artillerigatan 6B, 20521 Åbo, Finland and Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Åbo, Finland
| | - D Soto Véliz
- Laboratory of Paper Coating, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland
| | - M Mennillo
- Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Biskopsgatan 3-5, 20500 Åbo, Finland
| | - A P Venu
- Laboratory of Cell Biology, Center for Functional Materials, Åbo Akademi University, Bio City, Artillerigatan 6B, 20521 Åbo, Finland and Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Åbo, Finland
| | - P Ihalainen
- Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland.
| | - M Aubert
- Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Biskopsgatan 3-5, 20500 Åbo, Finland
| | - N Sandler
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 20520 Åbo, Finland
| | - C-E Wilén
- Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Biskopsgatan 3-5, 20500 Åbo, Finland
| | - M Toivakka
- Laboratory of Paper Coating, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland
| | - J E Eriksson
- Laboratory of Cell Biology, Center for Functional Materials, Åbo Akademi University, Bio City, Artillerigatan 6B, 20521 Åbo, Finland and Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Åbo, Finland
| | - R Österbacka
- Laboratory of Physics, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland
| | - J Peltonen
- Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Porthansgatan 3-5, 20500 Åbo, Finland.
| |
Collapse
|
22
|
Unconventional Tissue Engineering Materials in Disguise. Trends Biotechnol 2020; 38:178-190. [DOI: 10.1016/j.tibtech.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
|
23
|
Monroe MN, Nikonowicz RC, Grande-Allen KJ. Heterogeneous multi-laminar tissue constructs as a platform to evaluate aortic valve matrix-dependent pathogenicity. Acta Biomater 2019; 97:420-427. [PMID: 31362141 DOI: 10.1016/j.actbio.2019.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Designing and constructing controlled in vitro cell culture platforms is imperative toward pinpointing factors that contribute to the development of calcific aortic valve disease. A 3D, laminar, filter paper-based cell culture system that was previously established as a method of analyzing valvular interstitial cell migration and protein expression was adapted here for studying the impact of specific extracellular matrix proteins on cellular viability and calcification proclivity. Hydrogels incorporating hyaluronan and collagen I, two prevalent valvular extracellular matrix proteins with altered pathological production, were designed with similar mechanics to parse out effects of the individual proteins on cell behavior. Laminar constructs containing varying combinations of discrete layers of collagen and hyaluronan were assembled to mimic native and pathological valve compositions. Proteinaceous and genetic expression patterns pertaining to cell viability and calcific potential were quantified via fluorescent imaging. A significant dose-dependency was observed, with increased collagen content associated with decreased viability and increased calcific phenotype. These results suggest that extracellular composition is influential in calcific aortic valve disease progression and will be key toward development of future tissue-engineered or pharmaceutical calcific aortic valve treatments. STATEMENT OF SIGNIFICANCE: Calcific aortic valve disease (CAVD), a widespread heart valve disorder, is characterized by fibrotic leaflet thickening and calcific nodule formation. This pathological remodeling is an active process mediated by the valvular interstitial cells (VICs). Currently, the only treatment available is surgical replacement of the valve - a procedure associated with significant long-term risk and morbidity. Development of effective alternate therapies is hindered by our poor understanding of CAVD etiology. Previous work has implicated the composition and mechanics of the extracellular matrix in the progression of CAVD. These individual factors and their magnitude of influence have not been extensively explored - particularly in 3D systems. Here, we have bridged this gap in understanding through the employment of a heterogeneous 3D filter-paper culture system.
Collapse
|
24
|
Cramer SM, Larson TS, Lockett MR. Tissue Papers: Leveraging Paper-Based Microfluidics for the Next Generation of 3D Tissue Models. Anal Chem 2019; 91:10916-10926. [PMID: 31356054 PMCID: PMC7071790 DOI: 10.1021/acs.analchem.9b02102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paper-based scaffolds support the three-dimensional culture of mammalian cells in tissue-like environments. These Tissue Papers, a name that highlights the use of materials obtained from (plant) tissue to generate newly functioning (human) tissue structures, are a promising analytical tool to quantify cellular responses in physiologically relevant extracellular gradients and coculture architectures. Here, we highlight current examples of Tissue Papers, commonly used methods of analysis, and current measurement challenges.
Collapse
Affiliation(s)
- Sabrina M. Cramer
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
| | - Tyler S. Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|
25
|
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences and School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Pupinyo N, Chatatikun M, Chiabchalard A, Laiwattanapaisal W. In situ paper-based 3D cell culture for rapid screening of the anti-melanogenic activity. Analyst 2019; 144:290-298. [DOI: 10.1039/c8an01725e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, paper has gained traction in the biotechnology research field due to its ability to be a substrate for 3D cell culture.
Collapse
Affiliation(s)
- Naricha Pupinyo
- Graduate Program in Clinical Biochemistry and Molecular Medicine
- Department of Clinical Chemistry
- Faculty of Allied Health Sciences
- Chulalongkorn University
- Bangkok 10330
| | - Moragot Chatatikun
- Graduate Program in Clinical Biochemistry and Molecular Medicine
- Department of Clinical Chemistry
- Faculty of Allied Health Sciences
- Chulalongkorn University
- Bangkok 10330
| | - Anchalee Chiabchalard
- Department of Clinical Chemistry
- Faculty of Allied Health Sciences
- Chulalongkorn University
- Bangkok
- Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry
- Faculty of Allied Health Sciences
- Chulalongkorn University
- Bangkok
- Thailand
| |
Collapse
|
27
|
Ma J, Yan S, Miao C, Li L, Shi W, Liu X, Luo Y, Liu T, Lin B, Wu W, Lu Y. Paper Microfluidics for Cell Analysis. Adv Healthc Mater 2019; 8:e1801084. [PMID: 30474359 DOI: 10.1002/adhm.201801084] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Indexed: 01/04/2023]
Abstract
Paper microfluidics has attracted much attention since its first introduction around one decade ago due to the merits such as low cost, ease of fabrication and operation, portability, and facile integration with other devices. The dominant application for paper microfluidics still lies in point-of-care testing (POCT), which holds great promise to provide diagnostic tools to meet the ASSURED criteria. With micro/nanostructures inside, paper substrates provide a natural 3D scaffold to mimic native cellular microenvironments and create excellent biointerfaces for cell analysis applications, such as long-term 3D cell culture, cell capture/phenotyping, and cell-related biochemical analysis (small molecules, protein DNA, etc.). This review summarizes cell-related applications based on various engineered paper microdevices and provides some perspectives for paper microfluidics-based cell analysis.
Collapse
Affiliation(s)
- Jun Ma
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Shiqiang Yan
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Chunyue Miao
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Linmei Li
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Weiwei Shi
- Second Affiliated Hospital of Dalian Medical University; Dalian 116023 China
| | - Xianming Liu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals; Department of Chemical Engineering & School of Pharmaceutical Science and Technology; Dalian University of Technology; Dalian 116044 China
| | - Tingjiao Liu
- College of Stomatology; Dalian Medical University; Dalian 116044 China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Wenming Wu
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Yao Lu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
28
|
Wang LX, Zhou Y, Fu JJ, Lu Z, Yu L. Separation and Characterization of Prostate Cancer Cell Subtype according to Their Motility Using a Multi-Layer CiGiP Culture. MICROMACHINES 2018; 9:mi9120660. [PMID: 30558236 PMCID: PMC6315990 DOI: 10.3390/mi9120660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Abstract
Cancer cell metastasis has been recognized as one hallmark of malignant tumor progression; thus, measuring the motility of cells, especially tumor cell migration, is important for evaluating the therapeutic effects of anti-tumor drugs. Here, we used a paper-based cell migration platform to separate and isolate cells according to their distinct motility. A multi-layer cells-in-gels-in-paper (CiGiP) stack was assembled. Only a small portion of DU 145 prostate cancer cells seeded in the middle layer could successfully migrate into the top and bottom layers of the stack, showing heterogeneous motility. The cells with distinct migration were isolated for further analysis. Quantitative PCR assay results demonstrated that cells with higher migration potential had increased expression of the ALDH1A1, SRY (sex-determining region Y)-box 2, NANOG, and octamer-binding transcription 4. Increased doxorubicin tolerance was also observed in cells that migrated through the CiGiP layers. In summary, the separation and characterization of prostate cancer cell subtype can be achieved by using the multi-layer CiGiP cell migration platform.
Collapse
Affiliation(s)
- Lin-Xiang Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Ying Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jing-Jing Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
- Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, China.
| |
Collapse
|
29
|
Agarwal T, Rustagi A, Das J, Maiti TK. PAMAM dendrimer grafted cellulose paper scaffolds as a novel in vitro 3D liver model for drug screening applications. Colloids Surf B Biointerfaces 2018; 172:346-354. [PMID: 30179804 DOI: 10.1016/j.colsurfb.2018.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Development of cheap and portable 3D liver models is a need of an hour for drug screening applications in the healthcare and diagnostic sector. An appropriate 3D liver model would support adhesion, proliferation, viability and functionality of the liver cells. With this perspective, the present study delineates the fabrication and characterization of PAMAM conjugated cellulose filter paper-based 3D liver model. Due to the absence of any cell adhesion motif, paper cannot directly be used for cell culture applications, thus, it was functionalized with PAMAM dendrimer using glutaraldehyde. PAMAM derivatized paper (PF) supported significantly higher adhesion, proliferation, and viability of the HepG2 cells in comparison to non-functionalized paper. Moreover, HepG2 cells maintained their functional aspects i.e., expression of mature hepatocyte markers albumin, CK19, CYP3 A4, MDR1 and SULT2 A1 on PF. Further, we showed the application of the PF-based 3D liver model for drug toxicity evaluations against hepatotoxins. The results showed a significantly higher sensitivity of the HepG2 cells in paper-based 3D culture as compared to 2D monolayer culture, which is similar to that of physiological drug-induced responses. In conclusion, PAMAM functionalized filter paper could serve as an efficient biomaterial platform for the development of microscale technologies, liver-associated diagnostics, and drug screening applications.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Aruja Rustagi
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
30
|
Toley BJ, Das D, Ganar KA, Kaur N, Meena M, Rath D, Sathishkumar N, Soni S. Multidimensional Paper Networks: A New Generation of Low-Cost Pump-Free Microfluidic Devices. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Kenney RM, Lloyd CC, Whitman NA, Lockett MR. 3D cellular invasion platforms: how do paper-based cultures stack up? Chem Commun (Camb) 2018. [PMID: 28621775 DOI: 10.1039/c7cc02357j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.
Collapse
Affiliation(s)
- Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | | | | | | |
Collapse
|
32
|
Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017; 6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Paper is used in various applications in biomedical research including diagnostics, separations, and cell cultures. Paper can be conveniently engineered due to its tunable and flexible nature, and is amenable to high-throughput sample preparation and analysis. Paper-based platforms are used to culture primary cells, tumor cells, patient biopsies, stem cells, fibroblasts, osteoblasts, immune cells, bacteria, fungi, and plant cells. These platforms are compatible with standard analytical assays that are typically used to monitor cell behavior. Due to its thickness and porous nature, there are no mass transport limitations to/from the cells in paper scaffolds. It is possible to pattern paper in different scales (micrometer to centimeter), generate modular configurations in 3D, fabricate multicellular and compartmentalized tissue mimetics for clinical applications, and recover cells from the scaffolds for further analysis. 3D paper constructs can provide physiologically relevant tissue models for personalized medicine. Layer-by layer strategies to assemble tissue-like structures from low-cost and biocompatible paper-based materials offer unique opportunities that include understanding fundamental biology, developing disease models, and assembling different tissues for organ-on-paper applications. Paper-based platforms can also be used for origami-inspired tissue engineering. This work provides an overview of recent progress in engineered paper-based biomaterials and platforms to culture and analyze cells.
Collapse
Affiliation(s)
- Darlin Lantigua
- Department of Biological Sciences; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Yan Ni Kelly
- Department of Biomedical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Baris Unal
- Triton Systems, Inc.; 200 Turnpike Road Chelmsford MA 01824 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| |
Collapse
|
33
|
Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, Fiane A, Vaage J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc 2017; 6:e006339. [PMID: 28912209 PMCID: PMC5634284 DOI: 10.1161/jaha.117.006339] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- ITMO University, St. Petersburg, Russia
| | - Anna Malashicheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Gareth Sullivan
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Maria Bogdanova
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
| | - Arnt Fiane
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- ITMO University, St. Petersburg, Russia
| |
Collapse
|
34
|
Lam NT, Lam H, Sturdivant NM, Balachandran K. Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. ACTA ACUST UNITED AC 2017; 12:045013. [PMID: 28484097 DOI: 10.1088/1748-605x/aa71be] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of heart valve homeostatic and disease mechanisms are often limited by the challenges in simulating the in vivo milieu, where valve cells are surrounded by the extracellular matrix in a three-dimensional (3D) environment and experience multiple dynamic mechanical forces. Type I collagen is typically the most common 3D matrix used to culture valve cells in vitro. Unfortunately, this material has poor mechanical behavior due to an inherent propensity to compact significantly, unlike native valve leaflets. We hypothesized that incorporation of matrigel, which contains other heart valve-relevant matrix components such as type IV collagen and sulfated proteoglycans, to type I collagen would provide an appropriate physiological milieu for in vitro valve interstitial cell culture. Different semi-interpenetrating mixtures of collagen type I and matrigel were prepared and a thorough characterization of their physical, mechanical and biocompatibility properties was performed. We observed that the matrigel-collagen hydrogel was porous and degradable with tunable swelling behavior. Incorporation of matrigel not only enhanced the mechanical behavior of the composite hydrogel but also presented the cultured valve interstitial cells with a more enriched extracellular matrix network for in vitro culture. We showed that cells cultured in the composite hydrogel had comparable viability, proliferation and cell phenotype as compared with those in a collagen only gel. Importantly, the composite hydrogel was also amenable to in vitro cyclic stretching culture for 48 h. Overall, we report here the potential use of the matrigel-collagen hydrogel as a three dimensional scaffold for the dynamic mechanical culture of valve interstitial cells in vitro.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States of America
| | | | | | | |
Collapse
|
35
|
Wu Y, Gao Q, Nie J, Fu JZ, He Y. From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics with Integrated Continuous Perfusion. ACS Biomater Sci Eng 2017; 3:601-607. [DOI: 10.1021/acsbiomaterials.7b00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wu
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Nie
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-zhong Fu
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Dermutz H, Thompson-Steckel G, Forró C, de Lange V, Dorwling-Carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017. [DOI: 10.1039/c7ra00971b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Victoria de Lange
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| |
Collapse
|
37
|
Sapp MC, Krishnamurthy VK, Puperi DS, Bhatnagar S, Fatora G, Mutyala N, Grande-Allen KJ. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves. J R Soc Interface 2016; 13:20160449. [PMID: 28003526 PMCID: PMC5221519 DOI: 10.1098/rsif.2016.0449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Tissue oxygenation often plays a significant role in disease and is an essential design consideration for tissue engineering. Here, oxygen diffusion profiles of porcine aortic and mitral valve leaflets were determined using an oxygen diffusion chamber in conjunction with computational models. Results from these studies revealed the differences between aortic and mitral valve leaflet diffusion profiles and suggested that diffusion alone was insufficient for normal oxygen delivery in mitral valves. During fibrotic valve disease, leaflet thickening due to abnormal extracellular matrix is likely to reduce regional oxygen availability. To assess the impact of low oxygen levels on valve behaviour, whole leaflet organ cultures were created to induce leaflet hypoxia. These studies revealed a loss of layer stratification and elevated levels of hypoxia inducible factor 1-alpha in both aortic and mitral valve hypoxic groups. Mitral valves also exhibited altered expression of angiogenic factors in response to low oxygen environments when compared with normoxic groups. Hypoxia affected aortic and mitral valves differently, and mitral valves appeared to show a stenotic, rheumatic phenotype accompanied by significant cell death. These results indicate that hypoxia could be a factor in mid to late valve disease progression, especially with the reduction in chondromodulin-1 expression shown by hypoxic mitral valves.
Collapse
Affiliation(s)
- Matthew C Sapp
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Saheba Bhatnagar
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Gabrielle Fatora
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Neelesh Mutyala
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
38
|
Wang L, Xu C, Zhu Y, Yu Y, Sun N, Zhang X, Feng K, Qin J. Human induced pluripotent stem cell-derived beating cardiac tissues on paper. LAB ON A CHIP 2015; 15:4283-4290. [PMID: 26430714 DOI: 10.1039/c5lc00919g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Cong Xu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Yujuan Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Yue Yu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xiaoqing Zhang
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Ke Feng
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Jianhua Qin
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| |
Collapse
|
39
|
Truong AS, Lochbaum CA, Boyce MW, Lockett MR. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR. Anal Chem 2015; 87:11263-70. [PMID: 26507077 DOI: 10.1021/acs.analchem.5b02362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
Collapse
Affiliation(s)
- Andrew S Truong
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Christian A Lochbaum
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew W Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , 450 West Drive, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|
40
|
Ruiz JL, Hutcheson JD, Aikawa E. Cardiovascular calcification: current controversies and novel concepts. Cardiovasc Pathol 2015; 24:207-12. [PMID: 25797772 DOI: 10.1016/j.carpath.2015.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular calcification is a commonly observed but incompletely understood mechanism of increased atherosclerotic plaque instability and accelerated aortic valve stenosis. Traditional histological staining and imaging techniques are nonspecific for the type of mineral present in calcified tissues, information that is critical for proper validation of in vitro and in vivo models. This review highlights current gaps in our understanding of the biophysical implications and the cellular mechanisms of valvular and vascular calcification and how they may differ between the two tissue types. We also address the hindrances of current cell culture systems, discussing novel platforms and important considerations for future studies of cardiovascular calcification.
Collapse
Affiliation(s)
- Jessica L Ruiz
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Choi G, Choi S. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers. Analyst 2015; 140:5901-7. [DOI: 10.1039/c5an01200g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
By measuring the current generated from the 3-D paper stack, the electron and proton diffusivity through biofilms were quantitatively investigated.
Collapse
Affiliation(s)
- Gihoon Choi
- Bioelectronics & Microsystems Laboratory
- Department of Electrical & Computer Engineering
- State University of New York-Binghamton
- Binghamton
- USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory
- Department of Electrical & Computer Engineering
- State University of New York-Binghamton
- Binghamton
- USA
| |
Collapse
|