1
|
Zhang N, Wu Y, Xu W, Li Z, Wang L. Synergic fabrication of multifunctional liposomes nanocomposites for improved radiofrequency ablation combination for liver metastasis cancer therapy. Drug Deliv 2022; 29:506-518. [PMID: 35147065 PMCID: PMC8845112 DOI: 10.1080/10717544.2021.2008056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023] Open
Abstract
The field of biomedical research has recently been interested in nanoplatforms with various functionalities, such as cancer drug carriers and MRI and optical imaging, as well as thermal treatment, among other things. As a result of the present investigation, a unique multifunctional liposome (MFL) was established in this investigation. Using radiofrequency-induced imaging and drug release based on magnetic field impact, a dual drug delivery targeted with tumor multi-mechanism treatment was made more effective. The C60 (fullerene) surface was coated with iron nanocomposites to establish the proposed nanosystems, and PEGylation was used (Fe3O4-C60-PEG2000). For fullerene radiofrequency-triggered drug release, thermosensitive DPPC liposomes with folate-DSPE-PEG2000 enveloped the binary nanosystems and doxorubicin (DOX). The in vitro cytotoxicity of the nanocomposites was confirmed by the liver metastasis in HT-29 colon cancer cells using radiofrequency. The flow cytometry analysis confirmed the apoptosis cell death mechanism. The thermal treatment combined chemotherapeutic MFL nano framework transformed radiofrequency radiation from thermoresponsive liposomes, which was noticed both in vivo and in vitro. Due to their superior active tumor targeting and magnetic targeting characteristics, the MFL could also selectively destroy cancerous liver cells in highly co-localized targets.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenjian Li
- 3D Biomedicine Science & Technology Co., Limited, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
2
|
Organic–Inorganic Hybrid Perovskite Materials for Ultrasonic Transducer in Medical Diagnosis. CRYSTALS 2022. [DOI: 10.3390/cryst12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ultrasonic transducer is considered the most important component of ultrasound medical instruments, and its key active layer is generally fabricated by piezoelectric materials, such as BaTiO3, Pb (Zn, Ti)O3, PVDF, etc. As the star material, perovskite photovoltaic materials (organic and inorganic halide perovskite materials, such as CH3NH3PbI3, CsPbI3, etc.) have great potential to be widely used in solar cells, LEDs, detectors, and photoelectric and piezoelectric detectors due to their outstanding photoelectric and piezoelectric effects. Herein, we firstly discussed the research progress of commonly used piezoelectric materials and the corresponding piezoelectric effects, the current key scientific status, as well as the current application status in the field of ultrasound medicine. Then, we further explored the current progress of perovskite materials used in piezoelectric-effect devices, and their research difficulties. Finally, we designed an ideal ultrasonic transducer fabricated by perovskite photovoltaic materials and considered the future application prospects of organic and inorganic halide perovskite material in the field of ultrasound.
Collapse
|
3
|
Liu H, Li X, Chen Z, Bai L, Wang Y, Lv W. Synergic fabrication of pembrolizumab loaded doxorubicin incorporating microbubbles delivery for ultrasound contrast agents mediated anti-proliferation and apoptosis. Drug Deliv 2021; 28:1466-1477. [PMID: 34259093 PMCID: PMC8281080 DOI: 10.1080/10717544.2021.1921080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
This study evaluated pembrolizumab-conjugated, doxorubicin (DOX)-loaded microbubbles (PDMs) in combination with ultrasound (US) as molecular imaging agents for early diagnosis of B cell lymphomas, and as a targeted drug delivery system. Pembrolizumab, a monoclonal CD20 antibody, was attached to the surfaces of DOX-loaded microbubbles. PDM binding to B cell lymphoma cells was assessed using immunofluorescence. The cytotoxic effects of PDMs in combination with ultrasound (PDMs + US) were evaluated in vitro in CD20+ and CD20- cell lines, and its antitumor activities were assessed in Raji (CD20+) and Jurkat (CD20-) lymphoma cell-grafted mice. PDMs specifically bound to CD20+ cells in vitro and in vivo. Contrast enhancement was monitored in vivo via US. PDM peak intensities and contrast enhancement durations were higher in Raji than in Jurkat cell-grafted mice (p < 0.05). PDMs + US treatment resulted in improved antitumor effects and reduced systemic toxicity in Raji cell-grafted mice compared with other treatments (p < .05). Our results showed that PDMs + US enhanced tumor targeting, reduced systemic toxicity, and inhibited CD20+ B cell lymphoma growth in vivo. Targeted PDMs could be employed as US molecular imaging agents for early diagnosis, and are an effective targeted drug delivery system in combination with US for CD20+ B cell malignancy treatment.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Zihe Chen
- School of Medical Technology, Qiqihar Medical University, Qiqihar City, PR China
| | - Lianjie Bai
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| |
Collapse
|
4
|
Recent Advances in Metal-Based Magnetic Composites as High-Efficiency Candidates for Ultrasound-Assisted Effects in Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910461. [PMID: 34638801 PMCID: PMC8508863 DOI: 10.3390/ijms221910461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-based magnetic materials have been used in different fields due to their particular physical or chemical properties. The original magnetic properties can be influenced by the composition of constituent metals. As utilized in different application fields, such as imaging monitoring, thermal treatment, and combined integration in cancer therapies, fabricated metal-based magnetic materials can be doped with target metal elements in research. Furthermore, there is one possible new trend in human activities and basic cancer treatment. As has appeared in characterizations such as magnetic resonance, catalytic performance, thermal efficiency, etc., structural information about the real morphology, size distribution, and composition play important roles in its further applications. In cancer studies, metal-based magnetic materials are considered one appropriate material because of their ability to penetrate biological tissues, interact with cellular components, and induce noxious effects. The disruptions of cytoskeletons, membranes, and the generation of reactive oxygen species (ROS) further influence the efficiency of metal-based magnetic materials in related applications. While combining with cancer cells, these magnetic materials are not only applied in imaging monitoring focus areas but also could give the exact area information in the cure process while integrating ultrasound treatment. Here, we provide an overview of metal-based magnetic materials of various types and then their real applications in the magnetic resonance imaging (MRI) field and cancer cell treatments. We will demonstrate advancements in using ultrasound fields co-worked with MRI or ROS approaches. Besides iron oxides, there is a super-family of heterogeneous magnetic materials used as magnetic agents, imaging materials, catalytic candidates in cell signaling and tissue imaging, and the expression of cancer cells and their high sensitivity to chemical, thermal, and mechanical stimuli. On the other hand, the interactions between magnetic candidates and cancer tissues may be used in drug delivery systems. The materials’ surface structure characteristics are introduced as drug loading substrates as much as possible. We emphasize that further research is required to fully characterize the mechanisms of underlying ultrasounds induced together, and their appropriate relevance for materials toxicology and biomedical applications.
Collapse
|
5
|
Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1604. [DOI: 10.1002/wnan.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Miaomiao Zhang
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
- Phutung Research Institute Kathmandu Nepal
| | - Ghulam Mustafa
- Department of Sciences Bahria University Lahore Lahore Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| |
Collapse
|
6
|
Novel Hybrid Dextran-Gadolinium Nanoparticles as High-relaxivity T1 Magnetic Resonance Imaging Contrast Agent for Mapping the Sentinel Lymph Node. J Comput Assist Tomogr 2019; 43:350-357. [PMID: 30875338 DOI: 10.1097/rct.0000000000000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To assess the applicability of a novel hybrid dextran-gadolinium nanoparticles (NPs) as high-relaxivity T1 magnetic resonance imaging (MRI) contrast agent for mapping the sentinel lymph node (SLN). METHODS Dextran-bis-acrylamide-polyacrylic acid (Dex-MBA-PAA) NPs were synthesized through a self-assembly assisted approach and complexed with multiple chelated gadolinium (Gd) (III) ions. After their characterization was validated, they were used to mapping SLNs by MRI in Wistar rats, and their biosafety was evaluated. RESULTS Dextran-MBA-polyacrylic acid-Gd NPs have suitable particle size and much higher longitudinal relaxivity (r1) than that of commonly used clinical MRI contrast agents (eg, gadopentetic acid dimeglumine salt injection). The in vivo T1-weighted MRI results revealed their effectiveness at mapping SLNs. And their biological safety was also verified. CONCLUSIONS Dextran-MBA-polyacrylic acid-Gd NPs were synthesized and validated by in vitro and in vivo experiments for their ability to visualize SLNs by MRI with accurate positioning and excellent biosafety, and they have great potential for clinical SLN mapping.
Collapse
|
7
|
Gao X, Nan Y, Yuan Y, Gong X, Sun Y, Zhou H, Zong Y, Zhang L, Yu M. Gas‑filled ultrasound microbubbles enhance the immunoactivity of the HSP70‑MAGEA1 fusion protein against MAGEA1‑expressing tumours. Mol Med Rep 2018; 18:315-321. [PMID: 29749485 PMCID: PMC6059686 DOI: 10.3892/mmr.2018.9003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
Advanced malignant melanoma is characterized by rapid development, poor prognosis and insensitivity to chemoradiotherapy. Immunotherapy has become one of the primary clinical treatments for malignant melanomas. In recent decades, identifying specific tumour antigens and the enhanced immunoactivity of tumour vaccines has become critical for engineering successful tumour vaccines. As a widely used vaccine carrier, heat shock protein 70 (HSP70) clearly increases the immunogenicity of tumour antigens, such as melanoma-associated antigen A1 (MAGEA1). Based on previous studies, gas-filled ultrasound microbubbles (MBs) were engineered to carry an HSP70-MAGEA1 fusion protein (FP). Following subcutaneous injection around the lymphatic nodes the FP was directly released into the lymph nodes under ultrasonic imaging. The results indicated that the microbubbles enhanced the immunoactivity of FPs more effectively than HSP70-MAGEA1 fusion alone. Additionally, HSP70-MAGEA1 delivered via microbubbles clearly inhibited and delayed the growth of MAGEA1-expressing B16 melanomas in mice and improved the survival times of these animals compared with the fusion protein alone. The results of the present study demonstrated that controlled MBs enhance the immunoactivity of FPs and also highlights novel, potential vaccine carriers and a new strategy for engineering controllable tumour vaccine designs.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Nan
- Department of Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Gong
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuanyuan Sun
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huihui Zhou
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ming Yu
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Owen J, Crake C, Lee JY, Carugo D, Beguin E, Khrapitchev AA, Browning RJ, Sibson N, Stride E. A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery. Drug Deliv Transl Res 2018; 8:342-356. [PMID: 28299722 PMCID: PMC5830459 DOI: 10.1007/s13346-017-0366-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbubbles are currently in clinical use as ultrasound contrast agents and under active investigation as mediators of ultrasound therapy. To improve the theranostic potential of microbubbles, nanoparticles can be attached to the bubble shell for imaging, targeting and/or enhancement of acoustic response. Existing methods for fabricating particle-loaded bubbles, however, require the use of polymers, oil layers or chemical reactions for particle incorporation; embed/attach the particles that can reduce echogenicity; impair biocompatibility; and/or involve multiple processing steps. Here, we describe a simple method to embed nanoparticles in a phospholipid-coated microbubble formulation that overcomes these limitations. Magnetic nanoparticles are used to demonstrate the method with a range of different microbubble formulations. The size distribution and yield of microbubbles are shown to be unaffected by the addition of the particles. We further show that the microbubbles can be retained against flow using a permanent magnet, can be visualised by both ultrasound and magnetic resonance imaging (MRI) and can be used to transfect SH-SY5Y cells with fluorescent small interfering RNA under the application of a magnetic field and ultrasound field.
Collapse
Affiliation(s)
- Joshua Owen
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Calum Crake
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Jeong Yu Lee
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dario Carugo
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Estelle Beguin
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Richard J Browning
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Nicola Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
9
|
Wang H, Dai TT, Lu BL, Li SL, Lu Q, Mukwaya V, Dou HJ. Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Cellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging. Cell Mol Bioeng 2017; 10:537-548. [PMID: 29151981 PMCID: PMC5662700 DOI: 10.1007/s12195-017-0504-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Both diagnostic ultrasound (US) and magnetic resonance imaging (MRI) accuracy can be improved by using contrast enhancement. For US gas-filled microbubbles (MBs) or silica nanoparticles (SiNPs), and for MRI superparamagnetic or paramagnetic agents, contribute to this. However, interactions of MBs with the vascular wall and cells are not fully known for all contrast media. Methods We studied the in vitro interactions between three types of non-targeted air-filled MBs with a polyvinyl-alcohol shell and murine macrophages or endothelial cells. The three MB types were plain MBs and two types that were labelled (internally and externally) with superparamagnetic iron oxide nanoparticles (SPIONs) for US/MRI bimodality. Cells were incubated with MBs and imaged by microscopy to evaluate uptake and adhesion. Interactions were quantified and the MB internalization was confirmed by fluorescence quenching of non-internalized MBs. Results Macrophages internalized each MB type within different time frames: plain MBs 6 h, externally labelled MBs 25 min and internally labelled MBs 2 h. An average of 0.14 externally labelled MBs per cell were internalized after 30 min and 1.34 after 2 h; which was 113% more MBs than the number of internalized internally labelled MBs. The macrophages engulfed these three differently modified new MBs at various rate, whereas endothelial cells did not engulf MBs. Conclusions Polyvinyl-alcohol MBs are not taken up by endothelial cells. The MB uptake by macrophages is promoted by SPION labelling, in particular external such, which may be important for macrophage targeting.
Collapse
|
11
|
Zhang C, Yao ZC, Ding Q, Choi JJ, Ahmad Z, Chang MW, Li JS. Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk-Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21485-21495. [PMID: 28589726 DOI: 10.1021/acsami.7b05580] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Particulate platforms capable of delivering multiple actives as well as providing diagnostic features have gained considerable interest over the last few years. In this study, magnetic polymer yolk-shell particles (YSPs) were engineered using a tri-needle coaxial electrospraying technique enabling dual-mode (ultrasonic and magnetic resonance) imaging capability with specific multidrug compartments via an advanced single-step encapsulation process. YSPs comprised magnetic Fe3O4 nanoparticles (MNPs) embedded in the polymeric shell, an interfacing oil layer, and a polymeric core (i.e., composite shell-oil interface-polymeric core). The frequency of the ultrasound backscatter signal was modulated through YSP loading dosage, and both T1- and T2-weighted magnetic resonance imaging signal intensities were shown to decrease with increasing MNP content (YSP outer shell). Three fluorescent dyes (selected as model probes with varying hydrophobicities) were coencapsulated separately to confirm the YSP structure. Probe release profiles were tuned by varying power or frequency of an external auxiliary magnetic field (AMF, 0.7 mT (LAMF) or 1.4 mT (HAMF)). In addition, an "inversion" phenomenon for the AMF-enhanced drug release process was studied and is reported. A low YSP cytotoxicity (5 mg/mL) and biocompatibility (murine, L929) was confirmed. In summary, magnetic YSPs demonstrate timely potential as multifunctional theranostic agents for dual-imaging modality and magnetically controlled coactive delivery.
Collapse
Affiliation(s)
| | | | | | - James J Choi
- Bioengineering Department, Imperial College London , London SW7 2BP, U.K
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, U.K
| | | | | |
Collapse
|
12
|
Lee H, Kim H, Han H, Lee M, Lee S, Yoo H, Chang JH, Kim H. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed Eng Lett 2017; 7:59-69. [PMID: 30603152 PMCID: PMC6208473 DOI: 10.1007/s13534-017-0016-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
Ultrasound was developed several decades ago as a useful imaging modality, and it became the second most popular diagnostic tool due to its non-invasiveness, real-time capabilities, and safety. Additionally, ultrasound has been used as a therapeutic tool with several therapeutic agents and in nanomedicine. Ultrasound imaging is often used to diagnose many types of cancers, including breast, stomach, and thyroid cancers. In addition, ultrasound-mediated therapy is used in cases of joint inflammation, rheumatoid arthritis, and osteoarthritis. Microbubbles, when used as ultrasound contrast agents, can act as echo-enhancers and therapeutic agents, and they can play an essential role in ultrasound imaging and ultrasound-mediated therapy. Recently, various types of ultrasound contrast agents made of lipid, polymer, and protein shells have been used. Air, nitrogen, and perfluorocarbon are usually included in the core of the microbubbles to enhance ultrasound imaging, and therapeutic drugs are conjugated and loaded onto the surface or into the core of the microbubbles, depending on the purpose and properties of the substance. Many research groups have utilized ultrasound contrast agents to enhance the imaging signal in blood vessels or tissues and to overcome the blood-brain barrier or blood-retina barrier. These agents are also used to help treat diseases in various regions or systems of the body, such as the cardiovascular system, or as a cancer treatment. In addition, with the introduction of targeted moiety and multiple functional groups, ultrasound contrast agents are expected to have a potential future in ultrasound imaging and therapy. In this paper, we briefly review the principles of ultrasound and introduce the underlying theory, applications, limitations, and future perspectives of ultrasound contrast agents.
Collapse
Affiliation(s)
- Hohyeon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Haemin Kim
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hyounkoo Han
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Minji Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Sunho Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hongkeun Yoo
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Jin Ho Chang
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
- Sogang Institute of Advanced Technology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| |
Collapse
|