1
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
2
|
Singaravelu S, Madhan B, Abrahamse H, Dhilip Kumar SS. Multifunctional embelin- poly (3-hydroxybutyric acid) and sodium alginate-based core-shell electrospun nanofibrous mat for wound healing applications. Int J Biol Macromol 2024; 265:131128. [PMID: 38537856 DOI: 10.1016/j.ijbiomac.2024.131128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
In this study, coaxial electrospinning is employed to make core-shell fibers, which represents a major advance in biomaterial innovation. Fibers that combine a protective shell and a therapeutic agent-loaded core, herald a revolutionary era in tissue engineering and wound care. Besides supporting cell growth, these fibers also preserve sterility, which makes them ideal for advanced wound dressings. We used embelin as the basis for this study because of its natural antibacterial properties. Its effectiveness in inhibiting the growth of bacteria made it the ideal candidate for our research. We have synthesized core-shell nanofibers that contain Sodium Alginate (SAL) in a Poly (ethylene oxide) (PEO) shell and Embelin in a Poly (3-hydroxybutyric acid) (PHB) core, which exhibit the homogeneity and flawless structure required for biomedical applications. When using SAL-PEO and EMB-PHB solutions dissolved in 1,1,1,3,3,3 hexafluoro-2-propanol (HFIP), high consistency in results can be achieved. A biocompatibility study was conducted using NIH-3T3 fibroblasts, which demonstrated remarkable adhesion and proliferation, with over 95 % growth supporting both PHB + SAL-PEO and EMB-PHB + SAL-PEO fibers. In addition, the scaffold loaded with Embelin shows strong antibacterial activity and cytocompatibility. The combined activity demonstrates the potential of EMB-PHB + SAL-PEO fibers in wound healing, where tissue regeneration and preservation of sterility are crucial. The optimized concentration of Embelin within these scaffolds demonstrates robust antibacterial efficacy while exhibiting minimal toxicity, thus positioning them as highly promising candidates for a wide range of biological applications, including wound healing.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Centre for Academic and Research Excellence (CARE), CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600 020, India; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence (CARE), CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600 020, India
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
3
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
5
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning. Food Chem 2023; 402:134253. [DOI: 10.1016/j.foodchem.2022.134253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023]
|
7
|
Krysiak ZJ, Stachewicz U. Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1829. [PMID: 35817463 DOI: 10.1002/wnan.1829] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/31/2023]
Abstract
The skin is a complex layer system and the most important barrier between the environment and the organism. In this review, we describe some widespread skin problems, with a focus on eczema, which are affecting more and more people all over the world. Most of treatment methods for atopic dermatitis (AD) are focused on increasing skin moisture and protecting from bacterial infection and external irritation. Topical and transdermal treatments have specific requirements for drug delivery. Breathability, flexibility, good mechanical properties, biocompatibility, and efficacy are important for the patches used for skin. Up to today, electrospun fibers are mostly used for wound dressing. Their properties, however, meet the requirements for skin patches for the treatment of AD. Active agents can be incorporated into fibers by blending, coaxial or side-by-side electrospinning, and also by physical absorption post-processing. Drug release from the electrospun membranes is affected by drug and polymer properties and the technique used to combine them into the patch. We describe in detail the in vitro release mechanisms, parameters affecting the drug transport, and their kinetics, including theoretical approaches. In addition, we present the current research on skin patch design. This review summarizes the current extensive know-how on electrospun fibers as skin drug delivery systems, while underlining the advantages in their prospective use as patches for atopic dermatitis. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zuzanna J Krysiak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
8
|
Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
9
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
10
|
Krysiak ZJ, Stachewicz U. Urea-Based Patches with Controlled Release for Potential Atopic Dermatitis Treatment. Pharmaceutics 2022; 14:1494. [PMID: 35890388 PMCID: PMC9320356 DOI: 10.3390/pharmaceutics14071494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
Skin diseases such as atopic dermatitis (AD) are widespread and affect people all over the world. Current treatments for dry and itchy skin are mostly focused on pharmaceutical solutions, while supportive therapies such as ointments bring immediate relief. Electrospun membranes are commonly used as a drug delivery system, as they have a high surface to volume area, resulting in high loading capacity. Within this study we present the manufacturing strategies of skin patches using polymer membranes with active substances for treating various skin problems. Here, we manufactured the skin patches using electrospun poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) fibers blended and electrosprayed with urea. The highest cumulative release of urea was obtained from the PVB patches manufactured via blend electrospinning with 5% of the urea incorporated in the fiber. The maximum concentration of released urea was acquired after 30 min, which was followed up by 6 h of constant release level. The simultaneous electrospinning and electrospraying limited the urea deposition and resulted in the lowest urea incorporation followed by the low release level. The urea-based patches, manufactured via blend electrospinning, exhibited a great potential as overnight treatment for various skin problems and their development can bring new trends to the textile-based therapies for AD.
Collapse
Affiliation(s)
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland;
| |
Collapse
|
11
|
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1077. [PMID: 35407195 PMCID: PMC9000692 DOI: 10.3390/nano12071077] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials for air filtration have been studied by researchers for decades. Owing to the advantages of high porosity, small pore size, and good connectivity, nanofiber membranes prepared by electrospinning technology have been considered as an outstanding air-filter candidate. To satisfy the requirements of material functionalization, electrospinning can provide a simple and efficient one-step process to fabricate the complex structures of functional nanofibers such as core-sheath structures, Janus structures, and other multilayered structures. Additionally, as a nanoparticle carrier, electrospun nanofibers can easily achieve antibacterial properties, flame-retardant properties, and the adsorption properties of volatile gases, etc. These simple and effective approaches have benefited from the significate development of electrospun nanofibers for air-filtration applications. In this review, the research progress on electrospun nanofibers as air filters in recent years is summarized. The fabrication methods, filtration performances, advantages, and disadvantages of single-polymer nanofibers, multipolymer composite nanofibers, and nanoparticle-doped hybrid nanofibers are investigated. Finally, the basic principles of air filtration are concluded upon and prospects for the application of complex-structured nanofibers in the field of air filtration are proposed.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| |
Collapse
|
12
|
Williams L, Hatton FL, Willcock H, Mele E. Electrospinning of Stimuli‐Responsive Polymers for Controlled Drug Delivery: pH‐ and Temperature‐Driven Release. Biotechnol Bioeng 2022; 119:1177-1188. [DOI: 10.1002/bit.28043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- L. Williams
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - F. L. Hatton
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - H. Willcock
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - E. Mele
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
13
|
Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1772. [PMID: 34964277 DOI: 10.1002/wnan.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Among different kinds of modified release profiles, sustained drug release (SDR) has received the most attention due to its capability to provide a "safe, efficacious, and convenient" drug delivery effect. Electrospun nanofibers have shown their popularity in this interdisciplinary field, as demonstrated by the first reports about SDRs on drug delivery applications of blended nanofibers and core-shell nanofibers. Along with the evolution of electrospinning from a single-fluid blending process to coaxial, tri-axial, side-by-side, and other multi-fluid processes, more multi-chamber nanostructures can be created through a single-step straight forward manner. These multi-chamber nanostructures can act as a powerful platform to support a wide variety of new strategies for the development of novel SDR nanomaterials. Thus, this review describes a combination history of electrospinning and SDR and its further development trend. After a summary of the presently popular multi-chamber core-shell nanostructures, 15 strategies for furnishing SDR profiles are categorized and exemplified. The perspectives of electrospun multi-chamber nanostructures for further promoting SDR are narrated. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Gupta N, Kamath S M, Rao SK, D J, Patil S, Gupta N, Arunachalam KD. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat – Concurrent release for cartilage regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: A minireview. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104895] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Electrospun Janus Beads-On-A-String Structures for Different Types of Controlled Release Profiles of Double Drugs. Biomolecules 2021; 11:biom11050635. [PMID: 33922935 PMCID: PMC8146616 DOI: 10.3390/biom11050635] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
A side-by-side electrospinning process characterized by a home-made eccentric spinneret was established to produce the Janus beads-on-a-string products. In this study, ketoprofen (KET) and methylene blue (MB) were used as model drugs, which loaded in Janus beads-on-a-string products, in which polyvinylpyrrolidone K90 (PVP K90) and ethyl cellulose (EC) were exploited as the polymer matrices. From SEM images, distinct nanofibers and microparticles in the Janus beads-on-a-string structures could be observed clearly. X-ray diffraction demonstrated that all crystalline drugs loaded in Janus beads-on-a-string products were transferred into the amorphous state. ATR-FTIR revealed that the components of prepared Janus nanostructures were compatibility. In vitro dissolution tests showed that Janus beads-on-a-string products could provide typical double drugs controlled-release profiles, which provided a faster immediate release of MB and a slower sustained release of KET than the electrospun Janus nanofibers. Drug releases from the Janus beads-on-a-string products were controlled through a combination of erosion mechanism (linear MB-PVP sides) and a typical Fickian diffusion mechanism (bead KET-EC sides). This work developed a brand-new approach for the preparation of the Janus beads-on-a-string nanostructures using side-by-side electrospinning, and also provided a fresh idea for double drugs controlled release and the potential combined therapy.
Collapse
|
19
|
Castillo-Henríquez L, Vargas-Zúñiga R, Pacheco-Molina J, Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET AND DMPK 2020; 8:325-353. [PMID: 35300196 PMCID: PMC8915594 DOI: 10.5599/admet.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Electrospinning is a novel and sophisticated technique for the production of nanofibers with high surface area, extreme porous structure, small pore size, and surface morphologies that make them suitable for biomedical and bioengineering applications, which can provide solutions to current drug delivery issues of poorly water-soluble drugs. Electrospun nanofibers can be obtained through different methods asides from the conventional one, such as coaxial, multi-jet, side by side, emulsion, and melt electrospinning. In general, the application of an electric potential to a polymer solution causes a charged liquid jet that moves downfield to an oppositely charged collector, where the nanofibers are deposited. Plenty of polymers that differ in their origin, degradation character and water affinity are used during the process. Physicochemical properties of the drug, polymer(s), and solvent systems need to be addressed to guarantee successful manufacturing. Therefore, this review summarizes the recent progress in electrospun nanofibers for their use as a nanotechnological tool for dissolution optimization and drug delivery systems for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
| | - Rolando Vargas-Zúñiga
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jorge Pacheco-Molina
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jose Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000, Heredia, Costa Rica
| |
Collapse
|
20
|
Zuidema JM, Dumont CM, Wang J, Batchelor WM, Lu YS, Kang J, Bertucci A, Ziebarth NM, Shea LD, Sailor MJ. Porous Silicon Nanoparticles Embedded in Poly(lactic- co-glycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002560. [PMID: 32982626 PMCID: PMC7513949 DOI: 10.1002/adfm.202002560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Scaffolds made from biocompatible polymers provide physical cues to direct the extension of neurites and to encourage repair of damaged nerves. The inclusion of neurotrophic payloads in these scaffolds can substantially enhance regrowth and repair processes. However, many promising neurotrophic candidates are excluded from this approach due to incompatibilities with the polymer or with the polymer processing conditions. This work provides one solution to this problem by incorporating porous silicon nanoparticles (pSiNPs) that are pre-loaded with the therapeutic into a polymer scaffold during fabrication. The nanoparticle-drug-polymer hybrids are prepared in the form of oriented poly(lactic-co-glycolic acid) nanofiber scaffolds. We test three different therapeutic payloads: bpV(HOpic), a small molecule inhibitor of phosphatase and tensin homolog (PTEN); an RNA aptamer specific to tropomyosin-related kinase receptor type B (TrkB); and the protein nerve growth factor (NGF). Each therapeutic is loaded using a loading chemistry that is optimized to slow the rate of release of these water-soluble payloads. The drug-loaded pSiNP-nanofiber hybrids release approximately half of their TrkB aptamer, bpV(HOpic), or NGF payload in 2, 10, and >40 days, respectively. The nanofiber hybrids increase neurite extension relative to drug-free control nanofibers in a dorsal root ganglion explant assay.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Joanna Wang
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wyndham M Batchelor
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive
| | - Yi-Sheng Lu
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jinyoung Kang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, CA
| | - Alessandro Bertucci
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Noel M Ziebarth
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110805. [DOI: 10.1016/j.msec.2020.110805] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
|
22
|
Madan JR, Khobaragade S, Dua K, Awasthi R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatol Ther 2020; 33:e13370. [PMID: 32250507 DOI: 10.1111/dth.13370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
This work was aimed to formulate topical Apremilast (APM)-loaded nanostructured lipid carriers (NLCs) for the management of psoriasis. NLCs were prepared by a cold homogenization technique using Compritol 888ATO, oleic acid, Tween 80 and Span 20, and Transcutol P as a solid lipid, liquid lipid, surfactant mixture, and penetration enhancer, respectively. Carbopol 940 was used to convert NLC dispersion into NLC-based hydrogel to improve its viscosity for topical administration. The optimized formulation was characterized for size, polydispersity index (PDI), zeta potential (ZP), percentage of entrapment efficiency (%EE), and surface morphology. Furthermore, viscosity, spreadability, stability, in vitro drug diffusion, ex vivo skin permeation, and skin deposition studies were carried out. APM-loaded NLCs showed a narrow PDI (0.339) with a particle size of 758 nm, a %EE of 85.5%, and a ZP of -33.3 mV. Scanning electron microscopy confirmed spherical shape of NLCs. in vitro drug diffusion and ex vivo skin permeation results showed low drug diffusion, sustained drug release, and 60.1% skin deposition. The present study confirms the potential of the nanostructured lipid form of poorly water-soluble drugs for topical application and increased drug deposition in the skin.
Collapse
Affiliation(s)
- Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shweta Khobaragade
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 2020; 579:119164. [DOI: 10.1016/j.ijpharm.2020.119164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
|
24
|
A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers. Sci Rep 2020; 10:4302. [PMID: 32152364 PMCID: PMC7062762 DOI: 10.1038/s41598-020-60752-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/17/2020] [Indexed: 11/25/2022] Open
Abstract
Electrospinning with various machine configurations is being used to produce polymer nanofibers with different rates of output. The use of polymers with high viscosity and the encapsulation of nanoparticles for achieving functionalities are some of the limitations of the existing methods. A profiled multi-pin electrospinning (PMES) setup is demonstrated in this work that overcomes the limitations in the needle and needleless electrospinning like needle clogging, particle settling, and uncontrolled/uneven Taylor cone formation, the requirement of very high voltage and uncontrolled distribution of nanoparticles in nanofibers. The key feature of the current setup is the use of profiled pin arrangement that aids in the formation of spherical shape polymer droplet and hence ensures uniform Taylor cone formation throughout the fiber production process. With a 10 wt% of Polyvinyl Alcohol (PVA) polymer solution and at an applied voltage of 30 kV, the production rate was observed as 1.690 g/h and average fiber diameter obtained was 160.5 ± 48.9 nm for PVA and 124.9 ± 49.8 nm for Cellulose acetate (CA) respectively. Moreover, the setup also provides the added advantage of using high viscosity polymer solutions in electrospinning. This approach is expected to increase the range of multifunctional electrospun nanofiber applications.
Collapse
|
25
|
Pushpa Sweety J, Sowparani S, Mahalakshmi P, Selvasudha N, Yamini D, Geetha K, Ruckmani K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Nagiah N, Murdock CJ, Bhattacharjee M, Nair L, Laurencin CT. Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications. Sci Rep 2020; 10:609. [PMID: 31953439 PMCID: PMC6969175 DOI: 10.1038/s41598-020-57412-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/26/2019] [Indexed: 11/09/2022] Open
Abstract
Since the first work by Laurencin and colleagues on the development of polymeric electrospinning for biomedical purposes, the use of electrospinning technology has found broad applications in such areas of tissue regeneration and drug delivery. More recently, coaxial electrospinning has emerged as an important technique to develop scaffolds for regenerative engineering incorporated with drug(s). However, the addition of a softer core layer leads to a reduction in mechanical properties. Here, novel robust tripolymeric triaxially electrospun fibrous scaffolds were developed with a polycaprolactone (PCL) (core layer), a 50:50 poly (lactic-co-glycolic acid) (PLGA) (sheath layer) and a gelatin (intermediate layer) with a dual drug delivery capability was developed through modified electrospinning. A sharp increase in elastic modulus after the incorporation of PCL in the core of the triaxial fibers in comparison with uniaxial PLGA (50:50) and coaxial PLGA (50:50) (sheath)-gelatin (core) fibers was observed. Thermal analysis of the fibrous scaffolds revealed an interaction between the core-intermediate and sheath-intermediate layers of the triaxial fibers contributing to the higher tensile modulus. A simultaneous dual release of model small molecule Rhodamine B (RhB) and model protein Fluorescein isothiocynate (FITC) Bovine Serum Albumin (BSA) conjugate incorporated in the sheath and intermediate layers of triaxial fibers was achieved. The tripolymeric, triaxial electrospun systems were seen to be ideal for the support of mesenchymal stem cell growth, as shrinkage of fibers normally found with conventional electrospun systems was minimized. These tripolymeric triaxial electrospun fibers that are biomechanically competent, biocompatible, and capable of dual drug release are designed for regenerative engineering and drug delivery applications.
Collapse
Affiliation(s)
- Naveen Nagiah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Christopher J Murdock
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Maumita Bhattacharjee
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Lakshmi Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America.
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
| |
Collapse
|
27
|
Wang M, Wang K, Yang Y, Liu Y, Yu DG. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: A Review. Polymers (Basel) 2020; 12:E103. [PMID: 31947986 PMCID: PMC7022330 DOI: 10.3390/polym12010103] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning, as a promising platform in multidisciplinary engineering over the past two decades, has overcome major challenges and has achieved remarkable breakthroughs in a wide variety of fields such as energy, environmental, and pharmaceutics. However, as a facile and cost-effective approach, its capability of creating nanofibers is still strongly limited by the numbers of treatable fluids. Most recently, more and more efforts have been spent on the treatments of liquids without electrospinnability using multifluid working processes. These unspinnable liquids, although have no electrospinnability themselves, can be converted into nanofibers when they are electrospun with an electrospinnable fluid. Among all sorts of multifluid electrospinning methods, coaxial electrospinning is the most fundamental one. In this review, the principle of modified coaxial electrospinning, in which unspinnable liquids are explored as the sheath working fluids, is introduced. Meanwhile, several typical examples are summarized, in which electrospun nanofibers aimed for the environment remediation were prepared using the modified coaxial electrospinning. Based on the exploration of unspinnable liquids, the present review opens a way for generating complex functional nanostructures from other kinds of multifluid electrospinning methods.
Collapse
Affiliation(s)
| | - Ke Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| |
Collapse
|
28
|
Balan P, Indrakumar J, Murali P, Korrapati PS. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeutics. Int J Biol Macromol 2020; 142:201-211. [DOI: 10.1016/j.ijbiomac.2019.09.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
|
29
|
Scale‐up of electrospinning technology: Applications in the pharmaceutical industry. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1611. [DOI: 10.1002/wnan.1611] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/25/2023]
|
30
|
Electrospun wound dressing as a promising tool for the therapeutic delivery of ascorbic acid and caffeine. Ther Deliv 2019; 10:757-767. [PMID: 31840563 DOI: 10.4155/tde-2019-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: The aim of this work is to formulate a wound dressing for the delivery of ascorbic acid and caffeine. Method: A wound dressing was developed from electrospun nanofiber containing ascorbic acid and caffeine. In vitro drug release was performed at 25°C and 32°C. Wound healing activity of the nanofiber mats was tested in vivo using rat model with skin excision. Antifungal activity of the dressing was tested on Candida albicans using the disc diffusion method. Results & conclusion: Zone of inhibition was 6.7 mm for caffeine dressing; however, inhibition zone increased to 16.7 mm for samples containing both caffeine and ascorbic acid. Animals treated with ascorbic acid showed collagen deposition and very few fibroblast cells. Blood vessels and fibroblasts were increased in caffeine-loaded dressings compared with the ascorbic acid group. The findings of the present work suggest the benefits of topical ascorbic acid and caffeine for its high wound healing effects.
Collapse
|
31
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
32
|
Ziaee A, O'Dea S, Howard-Hildige A, Padrela L, Potter C, Iqbal J, Albadarin AB, Walker G, O'Reilly EJ. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques. Int J Pharm 2019; 572:118816. [DOI: 10.1016/j.ijpharm.2019.118816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022]
|
33
|
|
34
|
Zandi N, Lotfi R, Tamjid E, Shokrgozar MA, Simchi A. Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110432. [PMID: 31923974 DOI: 10.1016/j.msec.2019.110432] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and inner diameter of 180 ± 48 nm and 106 ± 30 nm, respectively. Thermal gravimetric analysis determines that the mass loss of the core-sheath fibers fall between the mass loss values of individual sheath and core fibers. Swelling studies indicate higher water absorption of the core-sheath mat compared to the separate sheath and core membranes. In vitro drug release studies in Phosphate Buffered Saline (PBS) determine sustained release of the therapeutics from the core-sheath structure. The release trails three stages including non-Fickian diffusion at the early stage followed by the Fickian diffusion mechanism. The present study shows a useful approach to design core-sheath nanofibrous membranes with controlled and programmable drug release profiles.
Collapse
Affiliation(s)
- Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran
| | - Roya Lotfi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran; Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| |
Collapse
|
35
|
Kandasamy S, Narayanan V, Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int J Biol Macromol 2019; 145:1018-1030. [PMID: 31726129 DOI: 10.1016/j.ijbiomac.2019.09.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Zn-Mn HAP (Zinc and Manganese substituted Hydroxyapatite), CMC (Carboxymethyl cellulose)/PVP (Polyvinyl pyrrolidone) and (Zn-Mn HAP)/CMC/PVP (Zn = Mn = 0.05, 0.1 M) were prepared by hydrothermal and electrospinning methods respectively. The prepared composites were characterized using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDAX) to examine the phase formation, functional groups and surface morphology. FTIR spectra of the composite confirmed the funcitonal groups present in the composite. SEM images showed the fiber formation and the incorporation of Zn-Mn HAP into the fiber structures. The physical properties like porosity, swelling and tensile strength was studied for the prepared composites. 0.1 M of (Zn-Mn HAP)/CMC/PVP (20, 40, 60 wt% of Zn-Mn HAP composite) showed good physical properties, in which the 60 wt% showed 98% of porosity with least swelling and the tensile strength was measured to be 67 MPa. Highest zone of inhibition was observed against the microbial organisms using this 60 wt% of 0.1 M of (Zn-Mn HAP)/CMC/PVP composite and it was also found to be hemocompatible with hemolysis value less than 3% when compared to other composites. The biocompatibility of the composite was evaluated using human osteoblast cells (HOS).
Collapse
|
36
|
Hu Q, Wu C, Zhang H. Preparation and Optimization of a Biomimetic Triple-Layered Vascular Scaffold Based on Coaxial Electrospinning. Appl Biochem Biotechnol 2019; 190:1106-1123. [PMID: 31705366 DOI: 10.1007/s12010-019-03147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Electrospinning is a promising method for preparing bionic vascular scaffolds. In particular, coaxial electrospinning can encapsulate polymer materials in biological materials and provide vascular scaffolds with good biomechanical properties. However, it is difficult to produce a stable Taylor cone during the coaxial electrospinning process. Moreover, glutaraldehyde cross-linked natural biomaterials are cytotoxic. To address these issues, a novel electrospinning process is proposed in this report. A non-ionic surfactant (Tween 80) was added to poly(lactic-co-glycolic acid) electrospinning solution and gelatin-collagen electrospinning solution, which prevented the interfacial effect of coaxial electrospinning due to different core/shell solutions. The as-prepared materials were then cross-linked with the non-toxic coupling agents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS). By comparing the biomechanical properties of EDC/NHS cross-linked vascular scaffold with glutaraldehyde vapor-cross-linked vascular scaffold, it was found that the fracture strain and biological performance of EDC/NHS cross-linked vascular scaffold were better than those of the glutaraldehyde cross-linked scaffold. Finally, a three-layer bionic vascular scaffold was prepared by the proposed electrospinning process. Biomechanical performance tests were carried out and the prepared scaffold was found to meet the requirements of tissue-engineered blood vessels. The research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Chuang Wu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China. .,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
37
|
Yu D, Wang M, Li X, Liu X, Zhu L, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1601. [DOI: 10.1002/wnan.1601] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Deng‐Guang Yu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Menglong Wang
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xiaoyan Li
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xinkuan Liu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Li‐Min Zhu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Sim Wan Annie Bligh
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| |
Collapse
|
38
|
Theerasilp M, Crespy D. pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS APPLIED BIO MATERIALS 2019; 2:4283-4290. [PMID: 35021443 DOI: 10.1021/acsabm.9b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective combination therapies can be achieved by programming materials for controlling release sequence, timing, and dose of multiple payloads. Herein, we synthesize dextran esters by coesterification of dextran, which display responsive properties at a precise pH threshold between 5.0 and 7.0. Multilayers electrospun nanofibers are prepared so that three different payloads are entrapped in three different dextran esters. The release of the three drugs can be sequentially and independently activated by a gradual increase of pH value. Because both pH threshold and release kinetics are matching conditions encountered by aliments along the gastrointestinal tract, these dextran ester multilayer nanofibers are promising for oral drug delivery.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
39
|
Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine (Lond) 2019; 14:2631-2644. [PMID: 31612773 DOI: 10.2217/nnm-2019-0191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prevalence of chronic inflammation of the gastrointestinal tract is increasing, emerging as a public health challenge. Conventional drug delivery systems targeting the colon have improved the treatment of inflammatory bowel disease. However, therapy frequently results in inconsistent efficacy and toxicity problems. Novel approaches based on nanoparticles offer several advantages over conventional dosage forms due to their ability to selectively target inflamed tissues. Several formulation efforts have been made in order to obtain increasingly selective nanosized systems, some with promising results in animal models of colitis. Despite all advances, no nanomedicines are yet approved for clinical use in inflammatory bowel disease. This review discusses the most recent efforts made toward the development of nanoparticles for regulating chronic intestinal inflammation.
Collapse
Affiliation(s)
- Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| |
Collapse
|
40
|
Bai J, Zuo X, Feng X, Sun Y, Ge Q, Wang X, Gao C. Dynamic Titania Nanotube Surface Achieves UV-Triggered Charge Reversal and Enhances Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36939-36948. [PMID: 31513367 DOI: 10.1021/acsami.9b11536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimuli-responsive biomaterials supply a promising solution to adapt to the complex physiological environment for different biomedical applications. In this study, a dynamic UV-triggered pH-responsive biosurface was constructed on titania nanotubes (TNTs) by loading photoacid generators, diphenyliodonium chloride, into the nanotubes, and grafting 2,3-dimethyl maleic anhydride (DMMA)-modified hyperbranched poly(l-lysine) (HBPLL) onto the surface. The local acidity was dramatically enhanced by UV irradiation for only 30 s, leading to the dissociation of DMMA and thereby the transformation of surface chemistry from negatively charged caboxyl groups to positively charged amino groups. The TNTs-HBPLL-DMMA substrate could better promote proliferation and spreading of rat bone mesenchymal stem cells (rBMSCs) after UV irradiation. The osteogenic differentiation of rBMSCs was enhanced because of the charge reversal in combination with the titania-based substrates.
Collapse
Affiliation(s)
- Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yunfeng Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qunzi Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xuemei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
41
|
Yang Y, Zhu T, Liu Z, Luo M, Yu DG, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019; 569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
|
42
|
Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Curr Drug Deliv 2019; 16:272-294. [PMID: 30674256 DOI: 10.2174/1567201816666190123121425] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
Abstract
Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
Collapse
Affiliation(s)
- Nawzat D Al-Jbour
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Mohammad D Beg
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Jolius Gimbun
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - A K M Moshiul Alam
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia.,Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
43
|
|
44
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
45
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|
46
|
Huang W, Hou Y, Lu X, Gong Z, Yang Y, Lu XJ, Liu XL, Yu DG. The Process⁻Property⁻Performance Relationship of Medicated Nanoparticles Prepared by Modified Coaxial Electrospraying. Pharmaceutics 2019; 11:E226. [PMID: 31083358 PMCID: PMC6572474 DOI: 10.3390/pharmaceutics11050226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
In pharmaceutical nanotechnology, the intentional manipulation of working processes to fabricate nanoproducts with suitable properties for achieving the desired functional performances is highly sought after. The following paper aims to detail how a modified coaxial electrospraying has been developed to create ibuprofen-loaded hydroxypropyl methylcellulose nanoparticles for improving the drug dissolution rate. During the working processes, a key parameter, i.e., the spreading angle of atomization region (θ, °), could provide a linkage among the working process, the property of generated nanoparticles and their functional performance. Compared with the applied voltage (V, kV; D = 2713 - 82V with RθV2 = 0.9623), θ could provide a better correlation with the diameter of resultant nanoparticles (D, nm; D = 1096 - 5θ with RDθ2 = 0.9905), suggesting a usefulness of accurately predicting the nanoparticle diameter. The drug released from the electrosprayed nanoparticles involved both erosion and diffusion mechanisms. A univariate quadratic equation between the time of releasing 95% of the loaded drug (t, min) and D (t = 38.7 + 0.097D - 4.838 × 105D2 with a R2 value of 0.9976) suggests that the nanoparticle diameter has a profound influence on the drug release performance. The clear process-property-performance relationship should be useful for optimizing the electrospraying process, and in turn for achieving the desired medicated nanoparticles.
Collapse
Affiliation(s)
- Weidong Huang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Yuan Hou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyi Lu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ziyun Gong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao-Ju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Xian-Li Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
47
|
Tyo KM, Minooei F, Curry KC, NeCamp SM, Graves DL, Fried JR, Steinbach-Rankins JM. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics 2019; 11:E160. [PMID: 30987206 PMCID: PMC6523330 DOI: 10.3390/pharmaceutics11040160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Electrospun fibers have emerged as a relatively new delivery platform to improve active agent retention and delivery for intravaginal applications. While uniaxial fibers have been explored in a variety of applications including intravaginal delivery, the consideration of more advanced fiber architectures may offer new options to improve delivery to the female reproductive tract. In this review, we summarize the advancements of electrospun coaxial, multilayered, and nanoparticle-fiber architectures utilized in other applications and discuss how different material combinations within these architectures provide varied durations of release, here categorized as either transient (within 24 h), short-term (24 h to one week), or sustained (beyond one week). We seek to systematically relate material type and fiber architecture to active agent release kinetics. Last, we explore how lessons derived from these architectures may be applied to address the needs of future intravaginal delivery platforms for a given prophylactic or therapeutic application. The overall goal of this review is to provide a summary of different fiber architectures that have been useful for active agent delivery and to provide guidelines for the development of new formulations that exhibit release kinetics relevant to the time frames and the diversity of active agents needed in next-generation multipurpose applications.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Keegan C Curry
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Sarah M NeCamp
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Danielle L Graves
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
48
|
Yao ZC, Wang JC, Ahmad Z, Li JS, Chang MW. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:776-783. [DOI: 10.1016/j.msec.2018.12.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023]
|
49
|
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS NANO 2019; 13:2749-2772. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural fiber systems provide inspirations for artificial fiber spinning and applications. Through a long process of trial and error, great progress has been made in recent years. The natural fiber itself, especially silks, and the formation mechanism are better understood, and some of the essential factors are implemented in artificial spinning methods, benefiting from advanced manufacturing technologies. In addition, fiber-based materials produced via bioinspired spinning methods find an increasingly wide range of biomedical, optoelectronic, and environmental engineering applications. This paper reviews recent developments in the spinning and application of bioinspired fiber systems, introduces natural fiber and spinning processes and artificial spinning methods, and discusses applications of artificial fiber materials. Views on remaining challenges and the perspective on future trends are also proposed.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
50
|
Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H, Zhang J, Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019; 24:E834. [PMID: 30813599 PMCID: PMC6429487 DOI: 10.3390/molecules24050834] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Fiber structures with nanoscale diameters offer many fascinating features, such as excellent mechanical properties and high specific surface areas, making them attractive for many applications. Among a variety of technologies for preparing nanofibers, electrospinning is rapidly evolving into a simple process, which is capable of forming diverse morphologies due to its flexibility, functionality, and simplicity. In such review, more emphasis is put on the construction of polymer nanofiber structures and their potential applications. Other issues of electrospinning device, mechanism, and prospects, are also discussed. Specifically, by carefully regulating the operating condition, modifying needle device, optimizing properties of the polymer solutions, some unique structures of core⁻shell, side-by-side, multilayer, hollow interior, and high porosity can be obtained. Taken together, these well-organized polymer nanofibers can be of great interest in biomedicine, nutrition, bioengineering, pharmaceutics, and healthcare applications.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Orthopedics, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Korea.
| | - Jun Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Liangdan Zeng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Ziwen Qiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaochen Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - He Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|