1
|
Carvalho MS, Nogueira DE, Cabral JM, Rodrigues CA. Neural progenitor cell-derived extracellular matrix as a new platform for neural differentiation of human induced pluripotent stem cells. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100070. [PMID: 36824374 PMCID: PMC9934470 DOI: 10.1016/j.bbiosy.2022.100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
The culture microenvironment has been demonstrated to regulate stem cell fate and to be a crucial aspect for quality-controlled stem cell maintenance and differentiation to a specific lineage. In this context, extracellular matrix (ECM) proteins are particularly important to mediate the interactions between the cells and the culture substrate. Human induced pluripotent stem cells (hiPSCs) are usually cultured as anchorage-dependent cells and require adhesion to an ECM substrate to support their survival and proliferation in vitro. Matrigel, a common substrate for hiPSC culture is a complex and undefined mixture of ECM proteins which are expensive and not well suited to clinical application. Decellularized cell-derived ECM has been shown to be a promising alternative to the common protein coatings used in stem cell culture. However, very few studies have used this approach as a niche for neural differentiation of hiPSCs. Here, we developed a new stem cell culture system based on decellularized cell-derived ECM from neural progenitor cells (NPCs) for expansion and neural differentiation of hiPSCs, as an alternative to Matrigel and poly-l-ornithine/laminin-coated well plates. Interestingly, hiPSCs were able to grow and maintain their pluripotency when cultured on decellularized ECM from NPCs (NPC ECM). Furthermore, NPC ECM enhanced the neural differentiation of hiPSCs compared to poly-l-ornithine/laminin-coated wells, which are used in most neural differentiation protocols, presenting a statistically significant enhancement of neural gene expression markers, such as βIII-Tubulin and MAP2. Taken together, our results demonstrate that NPC ECM provides a functional microenvironment, mimicking the neural niche, which may have interesting future applications for the development of new strategies in neural stem cell research.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Corresponding author.
| | - Diogo E.S. Nogueira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Wu CY, Melaku AZ, Ilhami FB, Chiu CW, Cheng CC. Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. Int J Mol Sci 2022; 23:ijms23084332. [PMID: 35457150 PMCID: PMC9032009 DOI: 10.3390/ijms23084332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable physical properties. When used as a bioactive substrate for cell culture, graphite/3A-PCL composites have an extremely low cytotoxic activity on normal cells and a high structural stability in a medium with red blood cells. A series of in vitro studies demonstrated that the resulting composite substrates can efficiently interact with cell surfaces to promote the adhesion, migration, and proliferation of adherent cells, as well as rapid wound healing ability at the damaged cellular surface. Importantly, placing these substrates under an indirect current electric field at only 0.1 V leads to a marked acceleration in cell growth, a significant increase in total cell numbers, and a remarkable alteration in cell morphology. These results reveal a newly created system with great potential to provide an efficient route for the development of multifunctional bioactive substrates with unique electro-responsiveness to manipulate cell growth and functions.
Collapse
Affiliation(s)
- Cheng-You Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Ashenafi Zeleke Melaku
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Du Z, Jia S, Xiong P, Cai Z. Preparation of protein nanoparticle-coated poly(hydroxybutyrate) electrospun nanofiber based scaffold for biomedical applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1876058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhanwen Du
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, China
| | - Shuwei Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, China
| | - Ping Xiong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, China
| | - Zhijiang Cai
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, China
| |
Collapse
|
4
|
Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy. Int J Mol Sci 2020; 21:ijms21134677. [PMID: 32630069 PMCID: PMC7370087 DOI: 10.3390/ijms21134677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The development of stimuli-responsive supramolecular micelles with high drug-loading contents that specifically induce significant levels of apoptosis in cancer cells remains challenging. Herein, we report photosensitive uracil-functionalized supramolecular micelles that spontaneously form via self-assembly in aqueous solution, exhibit sensitive photo-responsive behavior, and effectively encapsulate anticancer drugs at high drug-loading contents. Cellular uptake analysis and double-staining flow cytometric assays confirmed the presence of photo-dimerized uracil groups within the irradiated micelles remarkably enhanced endocytic uptake of the micelles by cancer cells and subsequently led to higher levels of apoptotic cell death, and thus improved the therapeutic effect in vitro. Thus, photo-dimerized uracil-functionalized supramolecular micelles may potentially represent an intelligent nanovehicle to improve the safety, efficacy, and applicability of cancer chemotherapy, and could also enable the development of nucleobase-based supramolecular micelles for multifunctional biomaterials and novel biomedical applications.
Collapse
|
5
|
Nguyen DT, Dinh VT, Dang LH, Nguyen DN, Giang BL, Nguyen CT, Nguyen TBT, Thu LV, Tran NQ. Dual Interactions of Amphiphilic Gelatin Copolymer and Nanocurcumin Improving the Delivery Efficiency of the Nanogels. Polymers (Basel) 2019; 11:E814. [PMID: 31067644 PMCID: PMC6571557 DOI: 10.3390/polym11050814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023] Open
Abstract
Herein, a new process to manufacture multicore micelles nanoparticles reinforced with co-assembly via hydrophobic interaction and electrostatic interaction under the help of ultrasonication was developed. The precise co-assembly between negative/hydrophobic drug and positive charged amphiphilic copolymer based pluronic platform allows the formation of complex micelles structures as the multicore motif with predefined functions. In this study, curcumin was selected as a drug model while positively charged copolymer was based on a pluronic-conjugated gelatin with different hydrophobicity length of Pluronic F87 and Pluronic F127. Under impact of dual hydrophobic and electrostatic interactions, the nCur-encapsulated core-shell micelles formed ranging from 40 nm to 70 nm and 40-100 nm by transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. It is found that the structures emerged depended on the relative lengths of the hydrophobic blocks in pluronic. Regarding g2(τ) behavior from DLS measurement, the nanogels showed a high stability in spherical form. Surprisingly, the release profiles showed a sustainable behavior of Cur from this system for drug delivery approaches. In vitro study exhibited that nCur-encapsulated complex micelles increased inhibitory activity against cancer cells growth with IC50 is 4.02 ± 0.11 mg/L (10.92 ± 0.3 µM) which is higher than of free curcumin at 9.40 ± 0.17 mg/L (25.54 ± 0.18 µM). The results obtained can provide the new method to generate the hierarchical assembly of copolymers with incorporated loading with the same property.
Collapse
Affiliation(s)
- Dinh Trung Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Van Thoai Dinh
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Le Hang Dang
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Dang Nam Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
| | - Bach Long Giang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, VietNam.
| | - Cong Truc Nguyen
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Thi Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City 590000, Vietnam.
| | - Le Van Thu
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
6
|
Cheng CC, Huang JJ, Lee AW, Huang SY, Huang CY, Lai JY. Highly Effective Photocontrollable Drug Delivery Systems Based on Ultrasensitive Light-Responsive Self-Assembled Polymeric Micelles: An in Vitro Therapeutic Evaluation. ACS APPLIED BIO MATERIALS 2019; 2:2162-2170. [DOI: 10.1021/acsabm.9b00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Yu Huang
- Graduate Institute of Cancer Biology and Drug Discovery, Graduate Institute of Clinical Medicine and Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| |
Collapse
|
7
|
Santoro R, Perrucci GL, Gowran A, Pompilio G. Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells Int 2019; 2019:8203950. [PMID: 30906328 PMCID: PMC6393933 DOI: 10.1155/2019/8203950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
8
|
Liao ZS, Huang SY, Huang JJ, Chen JK, Lee AW, Lai JY, Lee DJ, Cheng CC. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation. Biomacromolecules 2018; 19:2772-2781. [PMID: 29677448 DOI: 10.1021/acs.biomac.8b00380] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.
Collapse
Affiliation(s)
- Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine , Taipei Medical University , Taipei 11031 , Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| |
Collapse
|
9
|
Cell proliferation influenced by matrix compliance of gelatin grafted poly(d,l-Lactide) three dimensional scaffolds. Colloids Surf B Biointerfaces 2018; 166:170-178. [PMID: 29574246 DOI: 10.1016/j.colsurfb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022]
Abstract
Surface and mechanical properties of the biomaterials are determinants of cellular responses. In our previous study, star-shaped poly(d,l-Lactide)-b-gelatin (ss-pLG) was reported for possessing improved cellular adhesion and proliferation. Here, we extended our investigation to establish the cellular compatibility of gelatin-grafted PDLLA with respect to mechanical properties of biological tissues. In this view, linear PDLLA-b-gelatin (l-pLG) was synthesized and tissue-level compatibility of 1-pLG and ss-pLG against fibroblasts (L929), myoblasts (C2C12) and preosteoblasts (MG-63) was examined. The cell proliferation of C2C12 was significantly higher within l-pLG scaffolds, whereas L929 showed intensified growth within ss-pLG scaffolds. The difference in cell proliferation may be attributed to the varying mechanical properties of scaffolds; where the stiffness of l-pLG scaffolds was notably higher than ss-pLG scaffolds, most likely due to the variable levels of gelatin grafting on the backbone of PDLLA. Therefore, gelatin grafting can be used to modulate mechanical property of the scaffolds and this study reveals the significance of the matrix stiffness to produce the successful 3D scaffolds for tissue engineering applications.
Collapse
|
10
|
Yang L, Jiang Z, Zhou L, Zhao K, Ma X, Cheng G. Hydrophilic cell-derived extracellular matrix as a niche to promote adhesion and differentiation of neural progenitor cells. RSC Adv 2017. [DOI: 10.1039/c7ra08273h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell-derived extracellular matrix exhibits excellent adhesion performance for neural progenitor cell anchoring and residency, resulting in promoted proliferation of the stem cells to basal forebrain cholinergic neurons.
Collapse
Affiliation(s)
- Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- China
- School of Nano Technology and Nano Bionics
| | - Ziyun Jiang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- China
| | - Linhong Zhou
- Department of Pharmacy
- School of Medicine
- Xi'an Jiaotong University
- China
| | - Keli Zhao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- China
| | - Xun Ma
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- China
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- China
- School of Nano Technology and Nano Bionics
| |
Collapse
|