1
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
2
|
Zhao Y, Sun J, Xu XL, Su J, Du YZ. The potential of nanosystems in disrupting adenosine signaling pathways for tumor immunotherapy. Expert Opin Drug Deliv 2024. [PMID: 39434697 DOI: 10.1080/17425247.2024.2417687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Adenosine (ADO) is a naturally occurring nucleoside primarily synthesized through the hydrolysis of extracellular adenosine triphosphate. Within the tumor microenvironment, ADO levels substantially increase, resulting in suppressed immune responses. AREAS COVERED Nanosystems offer a promising approach for precise drug delivery to tumor lesions. In this review, we provide an overview of the current research progress in the development of nanosystems that modulate adenosine signaling for tumor immunotherapy. These nanosystems are designed to target adenosine-hydrolyzing proteins, increase adenosine decomposition, and antagonize adenosine receptors. EXPERT OPINION Based on the literature review, adenosine has great potential in tumor immunotherapy, and nano-drug delivery system has great application prospects in targeted cancer therapy in the near future due to its superior characteristics.
Collapse
Affiliation(s)
- Yutong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Jingqi Sun
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
| | - Yong-Zhong Du
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
3
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-42. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
4
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Lin Z, Nie F, Hou J, Guo X, Gong X, Zhang L, Xu J, Guo Y. Development of pH-responsive porphyran-coated gold nanorods for tumor photothermal and immunotherapy. Int J Biol Macromol 2024; 275:133460. [PMID: 38945321 DOI: 10.1016/j.ijbiomac.2024.133460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Cancer poses a significant threat to human health, and monotherapy frequently fails to achieve optimal therapeutic outcomes. Based on this premise, porphyran (PHP), a marine polysaccharide with immunomodulatory function, was used as a framework to coat gold nanorods and construct a novel nanomedicine (PHP-MPBA-GNRs) combining photothermal therapy and immunotherapy. In this design, PHP not only maintained the dispersion stability and photothermal stability of gold nanorods but also could be released under weakly acidic conditions to activate anti-tumor immunity. In vivo studies have shown that PHP-MPBA-GNRs can effectively inhibit tumor cell proliferation and reduce metastasis under near-infrared (NIR) light irradiation. Preliminary mechanistic investigations revealed that PHP-MPBA-GNRs could increase reactive oxygen species (ROS) and induce apoptosis in cancer cells. The PHP in PHP-MPBA-GNRs can also activate dendritic cells and up-regulate the expression of co-stimulatory molecules and antigen-presenting complexes. All biological experiments, including in vivo tests, demonstrated that PHP-MPBA-GNRs achieved a combination of photothermal therapy and immunotherapy for tumors.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaoyang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linsu Zhang
- Qiannan Medical College for Nationalities, Duyun 558000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
7
|
Yang L, Hu Q, Huang T. Breast Cancer Treatment Strategies Targeting the Tumor Microenvironment: How to Convert "Cold" Tumors to "Hot" Tumors. Int J Mol Sci 2024; 25:7208. [PMID: 39000314 PMCID: PMC11241188 DOI: 10.3390/ijms25137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer characterized as "cold tumors" exhibit low levels of immune cell infiltration, which limits the efficacy of conventional immunotherapy. Recent studies have focused on strategies using nanotechnology combined with tumor microenvironment modulation to transform "cold tumors" into "hot tumors". This approach involves the use of functionalized nanoparticles that target and modify the tumor microenvironment to promote the infiltration and activation of antitumor immune cells. By delivering immune activators or blocking immunosuppressive signals, these nanoparticles activate otherwise dormant immune responses, enhancing tumor immunogenicity and the therapeutic response. These strategies not only promise to increase the response rate of breast cancer patients to existing immunotherapies but also may pave new therapeutic avenues, providing a new direction for the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Liucui Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
9
|
Gowsalya K, Rithisa B, Haldorai Y, Shanthi K, Vivek R. Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102738. [PMID: 38341011 DOI: 10.1016/j.nano.2024.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Babu Rithisa
- Department of Chemistry, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu 641048, India
| | - Yuvaraj Haldorai
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeonbuk 38541, Republic of Korea
| | - Krishnamurthy Shanthi
- Department of Biochemistry, Kalinga University, Nava Raipur 492101, Chhattisgarh, India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
10
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Kaur S, Saini AK, Tuli HS, Garg N, Joshi H, Varol M, Kaur J, Chhillar AK, Saini RV. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1311-1326. [PMID: 37695334 DOI: 10.1007/s00210-023-02699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hardeep Singh Tuli
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Nancy Garg
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Anil K Chhillar
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, 124 001, India
| | - Reena V Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
12
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
14
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
15
|
Pérez-Herrero E, Lanier OL, Krishnan N, D'Andrea A, Peppas NA. Drug delivery methods for cancer immunotherapy. Drug Deliv Transl Res 2024; 14:30-61. [PMID: 37587290 PMCID: PMC10746770 DOI: 10.1007/s13346-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Despite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples. Moreover, this article provides an exhaustive review of the studies that have been published to date on the particular case of hematological cancers. (Created with BioRender).
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, Tenerife, Spain.
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Neha Krishnan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abby D'Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery & Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery & Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Lin Z, Liu Y, Gong X, Nie F, Xu J, Guo Y. Construction of quercetin-fucoidan nanoparticles and their application in cancer chemo-immunotherapy treatment. Int J Biol Macromol 2024; 256:128057. [PMID: 37956805 DOI: 10.1016/j.ijbiomac.2023.128057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Fucoidan (FU), a natural marine polysaccharide, is an immunomodulator with great potential in tumor immunotherapy. In this work, a FU encapsulated nanoparticle named QU@FU-TS was developed, which contained the anticancer phytochemical quercetin (QU) and had the potential for cancer chemo-immunotherapy. QU@FU-TS were constructed through molecular self-assembly using green material tea saponin (TS) as the linking molecule. The molecular dynamics (MD) simulation showed that QU was bound to the hydrophobic tail of TS. At the same time, FU spontaneously assembled with the hydrophilic head of TS to form the outer layer of the QU@FU-TS. The molecular interactions between QU and TS were mainly π-stacking and hydrogen bonds. The bonding of FU and TS was maintained through the formation of multiple hydrogen bonds between the sulfate ester group and the hydroxy group. The inhibitory effects of QU@FU-TS on A549 cell proliferation were more potent than that by free QU. The antitumor activity of QU@FU-TS was mediated through various mechanisms, including the induction of oxidative stress, blocking cell cycle progression, and promoting cell apoptosis. Moreover, QU@FU-TS has been demonstrated to impede the proliferation and migration of cancer cells in vivo. The expression levels of macrophage surface markers increased under the treatment of QU@FU-TS, suggesting the potential of QU@FU-TS to serve as an immunotherapeutic agent by promoting macrophage activation.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
17
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
19
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
20
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential targets and applications of nanodrug targeting myeloid cells in osteosarcoma for the enhancement of immunotherapy. Front Pharmacol 2023; 14:1271321. [PMID: 37808190 PMCID: PMC10551637 DOI: 10.3389/fphar.2023.1271321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Wang Y, Wang Q, Wang X, Yao P, Dai Q, Qi X, Yang M, Zhang X, Huang R, Yang J, Wang Q, Xia P, Zhang D, Sun F. Docetaxel-loaded pH/ROS dual-responsive nanoparticles with self-supplied ROS for inhibiting metastasis and enhancing immunotherapy of breast cancer. J Nanobiotechnology 2023; 21:286. [PMID: 37608285 PMCID: PMC10464340 DOI: 10.1186/s12951-023-02013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Although stimuli-responsive nanoplatforms were developed to deliver immunogenic cell death (ICD) inducers to enhance cancer immunotherapy, the complete release of ICD inducers into the tumor microenvironment (TME) was limited by the inadequate supplementation of endogenous stimulus (e.g., reactive oxygen species (ROS)). To address this issue, we synthesized a self-responsive nanomaterial with self-supplied ROS, which mainly consists of a ROS responsive moiety HPAP and cinnamaldehyde (CA) as the ROS-generating agent. The endogenous ROS can accelerate the degradation of HPAP in materials to release docetaxel (DTX, an ICD inducer). In intracellular acidic environment, the pH-sensitive acetal was cleaved to release CA. The released CA in turn induces the generation of more ROS through mitochondrial damage, resulting in amplified DTX release. Using this self-cycling and self-responsive nanomaterial as a carrier, DTX-loaded pH/ROS dual-responsive nanoparticles (DTX/FA-CA-Oxi-αCD NPs) were fabricated and evaluated in vitro and in vivo. RESULTS In vitro experiments validated that the NPs could be effectively internalized by FA-overexpressed cells and completely release DTX in acidic and ROS microenvironments to induce ICD effect. These NPs significantly blocked 4T1 cell migration and decreased cell invasion. In vivo experiments demonstrated that the tumor-targeted NPs significantly inhibited tumor growth and blocked tumor metastasis. More importantly, these NPs significantly improved immunotherapy through triggering effector T-cell activation and relieving the immunosuppressive state of the TME. CONCLUSIONS Our results demonstrated that DTX/FA-CA-Oxi-αCD NPs displayed great potential in preventing tumor metastasis, inhibiting tumor growth, and improving the efficacy of anti-PD-1antibody.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Dai
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Department of Urology, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
22
|
Jiang W, Wang L, Zhang Y, Li H. Identification and verification of novel immune-related ferroptosis signature with excellent prognostic predictive and clinical guidance value in hepatocellular carcinoma. Front Genet 2023; 14:1112744. [PMID: 37671041 PMCID: PMC10475594 DOI: 10.3389/fgene.2023.1112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Immunity and ferroptosis often play a synergistic role in the progression and treatment of hepatocellular carcinoma (HCC). However, few studies have focused on identifying immune-related ferroptosis gene biomarkers. Methods: We performed weighted gene co-expression network analysis (WGCNA) and random forest to identify prognostic differentially expressed immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs) respectively to run co-expression analysis for prognostic differentially expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs). Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a prognostic predictive model. Differential expression and prognostic analysis based on shared data from multiple sources and experimental means were performed to further verify the 3 modeled genes' biological value in HCC. We ran various performance testing methods to test the model's performance and compare it with other similar signatures. Finally, we integrated composite factors to construct a comprehensive quantitative nomogram for accurate prognostic prediction and evaluated its performance. Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source sequencing data, QRT-PCR, immunohistochemical staining and testing methods fully confirmed the upregulation and significant prognostic influence of the three PR-DE-IRFeCGs in HCC. The model performed well in the performance tests of multiple methods based on the 5 cohorts. Furthermore, our model outperformed other related models in various performance tests. The immunotherapy and chemotherapy guiding value of our signature and the comprehensive nomogram's excellent performance have also stood the test. Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent prognostic prediction and clinical guidance value in HCC.
Collapse
Affiliation(s)
- Wenxiu Jiang
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Lili Wang
- Department of Clinical Research, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yajuan Zhang
- General Medicine, Pingjiang Xincheng Community Health Service Center, Suzhou, China
| | - Hongliang Li
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| |
Collapse
|
23
|
Qin S, Li L, Liu D. Metastasis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma. Aging (Albany NY) 2023; 15:7219-7236. [PMID: 37494671 PMCID: PMC10415573 DOI: 10.18632/aging.204902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Osteosarcoma is the most prevalent malignant bone tumor. In this study, we identified metastasis-related genes (MRG) that are differentially expressed between primary and metastatic osteosarcoma and employed them to create metastasis-related risk tags (MRSs) for the overall survival of osteosarcoma patients. Using consistent cluster analysis, patients with osteosarcoma in the TARGET database were divided into subgroups with different metastatic scoring patterns. The clinicopathological traits, survival rates, tumor microenvironment traits, immune-related scores, and therapeutic responses of these patients varied. Additionally, we constructed MRS-based risk characteristics and nomographs and developed an MRG Score to improve patient characteristics. Thorough evaluations demonstrated that prognostic models and metastasis scores can distinguish high-risk patients from low-risk individuals, offering excellent predictive value. Finally, western blotting was used to confirm the expression of five identified MRG markers, which are crucial for osteosarcoma invasion and migration in terms of mechanism. Our findings represent a novel and practical predictive biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
24
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
25
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
26
|
Huang J, Zhao P, Shi J, Ning J, Wang Z, Luo Y, Qin J, Huang X. Prognostic Value and Immunological Role of P4HA3 in Colon Adenocarcinoma. Int J Gen Med 2023; 16:1953-1971. [PMID: 37251280 PMCID: PMC10224728 DOI: 10.2147/ijgm.s407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) has been proven to participate in the occurrence and development of multiple cancers. However, the functional role of P4HA3 in the tumor immune microenvironment (TIME) of colon adenocarcinoma (COAD) and the prognosis of COAD patients has not been clarified. This study aimed to elucidate the immunological role and prognostic value of P4HA3 in COAD. Methods P4HA3 expression in COAD tissues was analyzed via experiments and a bioinformatics algorithm. Based on the COAD patients in The Cancer Genome Atlas database, we comprehensively evaluated whether the expression levels of P4HA3 affected clinical prognosis, TIME, and immunotherapy of COAD using the R platforms and several public databases, including GEPIA, TIMER, TISIDB, and TCIA. Results The results of the pan-cancer analysis indicated that P4HA3 expression was significantly different in most tumor tissues compared with normal tissues. P4HA3 was overexpressed in COAD tissues, and overexpression of P4HA3 was associated with a worse overall survival and a shorted progression-free interval in COAD patients. The expression of P4HA3 was positively correlated with pathological stage, T stage, N stage, perineural infiltration, and lymphatic infiltration. There were significant correlations of P4HA3 expression levels with immune cell infiltration and their makers, as well as immunomodulators, chemokines, and microsatellite status. Moreover, overexpression of P4HA3 was associated with a lower response rate to immunotherapy in the IMvigor210 cohort. Conclusion Overexpression of P4HA3 is closely related to the poor prognosis of COAD patients, and P4HA3 is a potential target for immunotherapy in COAD patients.
Collapse
Affiliation(s)
- Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jialing Shi
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhen Wang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yihua Luo
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jingqian Qin
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
27
|
Li Q, Xu X, Jiao X. Prognostic implication of cuproptosis related genes associates with immunity in Ewing's sarcoma. Transl Oncol 2023; 31:101646. [PMID: 36871208 PMCID: PMC10006858 DOI: 10.1016/j.tranon.2023.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Growing evidence demonstrated that cuproptosis play critical roles in human cancers. We aimed to identify the roles of cuproptosis related genes (CRGs) in prognosis and immunity of Ewing's sarcoma. The data of GSE17674 and GSE63156 were obtained from GEO. The expression of 17 CRGs and immune cells were explored, then correlation was analyzed. Based on CRGs, two molecular clusters were identified by consensus clustering algorithm. KM survival and IME features including immune cells, immune response, checkpoint genes between clusters were evaluated. NFE2L2, LIAS, and CDKN2A were screened out as prognostic signatures by univariate, LASSO and step regression. A risk model was established, and validated by KM method with p = 0.0026, and perfect AUC values. The accuracy of risk model was also well validated in external dataset. A nomogram was constructed and evaluated by calibration curves and DCA. Low level of immune cells, immune response, and enriched checkpoint genes were found in high-risk group. GSEA of signatures and GSVA of ES-related pathways revealed the potential molecular mechanism involved in ES progression. Several drugs showed sensitivity to ES samples. DEGs between risk groups were screened out, and function enrichment was conducted. Finally, scRNA analysis of GSE146221 was done. NFE2L2, and LIAS played crucial role in the evolution of ES by pesudotime and trajectory methods. Our study provided new aspects for further research in ES.
Collapse
Affiliation(s)
- Qingbo Li
- Department of Orthopedic, Second Hospital of Shandong University, Jinan, China
| | - Xiao Xu
- Sterile Supply Department, First People's Hospital of Jinan, Jinan, China
| | - Xiejia Jiao
- Department of Orthopedic, Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
28
|
Zarenezhad E, Kanaan MHG, Abdollah SS, Vakil MK, Marzi M, Mazarzaei A, Ghasemian A. Metallic Nanoparticles: Their Potential Role in Breast Cancer Immunotherapy via Trained Immunity Provocation. Biomedicines 2023; 11:biomedicines11051245. [PMID: 37238916 DOI: 10.3390/biomedicines11051245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 05/28/2023] Open
Abstract
Owing to drawbacks in the current common cancer therapies including surgery, chemotherapy and radiotherapy, the development of more reliable, low toxic, cost-effective and specific approaches such as immunotherapy is crucial. Breast cancer is among the leading causes of morbidity and mortality with a developed anticancer resistance. Accordingly, we attempted to uncover the efficacy of metallic nanoparticles (MNPs)-based breast cancer immunotherapy emphasizing trained immunity provocation or innate immunity adaptation. Due to the immunosuppressive nature of the tumor microenvironment (TME) and the poor infiltration of immune cells, the potentiation of an immune response or direct combat is a goal employing NPs as a burgeoning field. During the recent decades, the adaptation of the innate immunity responses against infectious diseases and cancer has been recognized. Although the data is in a scarcity with regard to a trained immunity function in breast cancer cells' elimination, this study introduced the potential of this arm of immunity adaptation using MNPs.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Manal Hadi Ghaffoori Kanaan
- Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad 9768876516, Iraq
| | - Sura Saad Abdollah
- Suwaria Primary Health Care Sector, Wassit Health Office, Sharjah 9668866516, Iraq
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| |
Collapse
|
29
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
30
|
Lee E, Lee ES. Tumor extracellular vesicles carrying antitumor (KLAKLAK)2 peptide and tumor-specific antigens for improved tumor therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
31
|
Duan S, Sun F, Qiao P, Zhu Z, Geng M, Gong X, Li Y, Yao H. Detachable Dual-Targeting Nanoparticles for Improving the Antitumor Effect by Extracellular Matrix Depletion. ACS Biomater Sci Eng 2023; 9:1437-1449. [PMID: 36795746 DOI: 10.1021/acsbiomaterials.2c01179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In the tumor microenvironment (TME), the extracellular matrix (ECM) produced by cancer-associated fibroblasts (CAFs) forms a dense barrier that prevents nanodrugs from penetrating into deep tumor sites, leading to unsatisfactory therapeutic effects. Recently, it has been found that ECM depletion and using small-sized nanoparticles are effective strategies. Herein, we reported a detachable dual-targeting nanoparticle (HA-DOX@GNPs-Met@HFn) based on reducing ECM for enhancing penetration. When these nanoparticles reached the tumor site, the nanoparticles were divided into two parts in response to matrix metalloproteinase-2 overexpressed in TME, causing a decrease in the nanoparticle size from about 124 to 36 nm. One part was Met@HFn, which was detached from the surface of gelatin nanoparticles (GNPs), which effectively targeted tumor cells and released metformin (Met) under acidic conditions. Then, Met downregulated the expression of the transforming growth factor β by the adenosine monophosphate-activated protein kinase pathway to inhibit the activity of CAFs, thereby suppressing the production of ECM including α-smooth muscle actin and collagen I. The other was the small-sized hyaluronic acid-modified doxorubicin prodrug with autonomous targeting ability, which was gradually released from GNPs and internalized into deeper tumor cells. Intracellular hyaluronidases triggered the release of doxorubicin (DOX), which killed tumor cells by inhibiting DNA synthesis. The combination of size transformation and ECM depletion enhanced the penetration and accumulation of DOX in solid tumors. Therefore, the tumor chemotherapy effect was greatly improved.
Collapse
Affiliation(s)
- Songchao Duan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Pan Qiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Meilin Geng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Xiaobao Gong
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| |
Collapse
|
32
|
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles. J Funct Biomater 2023; 14:136. [PMID: 36976060 PMCID: PMC10053410 DOI: 10.3390/jfb14030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
34
|
Chen Z, Wen T, Wang X, Yang L, Wang Z, Qin Y, Hu Y, Zhang T, Wang D, Liu A, Zhang L, Lei M, Zhu Y. Co-delivery of immunochemotherapeutic by classified targeting based on chitosan and cyclodextrin derivatives. Int J Biol Macromol 2023; 226:1396-1410. [PMID: 36442558 DOI: 10.1016/j.ijbiomac.2022.11.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Herein, a cyclodextrin derivative (R6RGD-CMβCD) with tumor target and a carboxymethyl chitosan derivative (M2pep-CMCS) with tumor-associated macrophages 2 (TAM2) target were successfully synthesized, respectively. DOX-loaded nanoparticles (R6RGD-CMβCD@DOX NPs, RCNPDOX) and R848-loaded nanoparticles (M2pep-CMCS@R848 NPs, MCNPR848) were prepared. Furthermore, the RCNPDOX and MCNPR848 exhibited good DOX and R848 absorption. Meanwhile, the synergetic cell toxicity of RCNPDOX and MCNPR848 was found. Additionally, RCNPDOX + MCNPR848 nanoparticles greatly promoted the expression levels of cleaved Caspase3, which indicated that the nanoparticles could induce cell apoptosis. At the same time, the immunohistochemical images exhibited that RCNPDOX + MCNPR848 group could effectively transform the phenotype of tumor-associated macrophages. Importantly, in vivo experiments revealed that RCNPDOX + MCNPR848 NPs exerted excellent anticancer effects in tumor-bearing mice. To summarize, RCNPDOX + MCNPR848 NPs are effective anticancer treatment combining chemotherapy and immunotherapy, M2pep-CMCS and R6RGD-CMβCD are good delivery materials.
Collapse
Affiliation(s)
- Zhimeng Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tiantian Wen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongjie Wang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanru Qin
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yixue Hu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tianyu Zhang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dongna Wang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Amin Liu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Liefeng Zhang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongqiang Zhu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
35
|
Chen Q, Huang X, Zhang G, Li J, Liu Y, Yan X. Novel targeted pH-responsive drug delivery systems based on PEGMA-modified bimetallic Prussian blue analogs for breast cancer chemotherapy. RSC Adv 2023; 13:1684-1700. [PMID: 36712642 PMCID: PMC9828049 DOI: 10.1039/d2ra06631a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
The development of novel nanoparticle-based drug delivery systems (nano-DDSs) with high loading capacity, low toxicity, precise targeting, and excellent biocompatibility remains urgent and important for the treatment of breast cancer (BC). Herein, novel BC-targeted nano-DDSs based on bimetallic Prussian blue analogs (PBA-DDSs) for intracellular doxorubicin (DOX) delivery and pH-responsive release were developed. Two kinds of bimetallic PBA, namely CuFe (copper-iron) PBA and CoFe (cobalt-iron) PBA, were synthesized by a coprecipitation method, followed by modification with polyethyleneglycol methacrylate (PEGMA) via surface-initiated atom transfer radical polymerization and immobilization with the AS1411 aptamer to obtain two kinds of novel BC-targeted nano-DDS. CuFePBA@PEGMA@AS1411 and CoFePBA@PEGMA@AS1411 showed high drug loading efficiency of 80% and 84%, respectively, for DOX, while 56.0% and 75.9% DOX release could be achieved under acidic pH conditions. In vitro cell viability and in vivo experiments proved the good biocompatibility of both PBA-DDSs. Cellular uptake and in vivo distribution suggested that both PBA-DDSs had efficient nucleolin-targeting capability, indicating the targeted delivery of DOX in tumor tissues. In vivo evaluation of anti-BC efficacy further confirmed that the obtained PBA-DDSs exhibited excellent therapeutic efficacy with limited side-effects. Therefore, the proposed novel PBA-DDSs can be used as secure and effective drug nano-DDSs for BC chemotherapy.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xiaoyu Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Geyi Zhang
- Department of Orthopedics, Yellow River Sanmenxia Affiliated Hospital of Henan University of Science and Technology No. 2, Heping West Road Sanmenxia 472000 P. R. China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xu Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| |
Collapse
|
36
|
Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14:1143102. [PMID: 36909177 PMCID: PMC9992554 DOI: 10.3389/fphar.2023.1143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.
Collapse
Affiliation(s)
- Fan Yang
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Qingjie He
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Wei X, Yang M. Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Front Pharmacol 2023; 14:1180794. [PMID: 37089933 PMCID: PMC10117787 DOI: 10.3389/fphar.2023.1180794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer as the most frequent malignancy in women. Drug resistance, metastasis, and immune escape are the major factors affecting patient survival and represent a huge challenge in BC treatment in clinic. The cell- and subcellular organelle-targeting nanoparticles-mediated targeted BC therapy may be an effective modality for immune evasion, metastasis, and drug resistance. Nanocarriers, efficiently delivering small molecules and macromolecules, are used to target subcellular apparatuses with excellent targeting, controlled delivery, and fewer side effects. This study summarizes and critically analyzes the latest organic nanoparticle-mediated subcellular targeted therapeutic based on chemotherapy, gene therapy, immunotherapy, and combination therapy in detail, and discusses the challenges and opportunities of nanoparticle therapy.
Collapse
Affiliation(s)
- Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Ming Yang,
| |
Collapse
|
38
|
Song P, Lu Z, Jiang T, Han W, Chen X, Zhao X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int J Biol Macromol 2022; 222:1078-1091. [DOI: 10.1016/j.ijbiomac.2022.09.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
39
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
40
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
41
|
Qian X, Xia C, Chen X, Li Q, Li D. Self-assembled amphiphilic copolymers-doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2202-2219. [PMID: 35924948 DOI: 10.1080/09205063.2022.2100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amphiphilic copolymers have long been utilized to turn hydrophobic anticancer drugs into nanoparticles administered to patients with cancer. A lack of stability in these monotherapies may be blamed for their poor clinical results in patients with cancer. We propose novel nanotherapies based on polymeric small prodrugs that preserve pharmacologic effectiveness while significantly reducing the toxicity of the fabricated drugs in animals to overcome this problem. Doxorubicin is attached to the end of the PLA fragments through a hydrolyzable ester bond utilizing methoxypolyethylene glycol-block-poly(d, l-lactic acid) (mPEG-PCL(2K)) with conjugates to mimic the self-assembly of colloidal nanotherapies. In a gastric cancer xenograft model, this nanotherapy displays a long-lasting suppression of tumor growth once a reasonable dosage is administered. Our findings imply that a toxic chemical and hydrophobic can be converted into therapeutic effective self-delivery nanotreatment.
Collapse
Affiliation(s)
- Xiaoqi Qian
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Chenmei Xia
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Xia Chen
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Qianqian Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Dong Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
42
|
Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for Chemoimmunotherapy Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5209-5227. [PMID: 36388877 PMCID: PMC9651025 DOI: 10.2147/ijn.s388075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits high recurrence and mortality rates because of the lack of effective treatment targets. Surgery and traditional chemotherapy are the primary treatment options. Immunotherapy shows high potential for treating various cancers but exhibits limited efficacy against TNBC as a monotherapy. Chemoimmunotherapy has broad prospects for applications for cancer treatment conferred through the synergistic immunomodulatory and anti-tumor effects of chemotherapy and immunotherapeutic strategies. However, improving the efficacy of synergistic therapy and reducing the side effects of multiple drugs remain to be the main challenges in chemoimmunotherapy against TNBC. Nanocarriers can target both cancer and immune cells, promote drug accumulation, and show minimal toxicity, making them ideal delivery systems for chemotherapeutic and immunotherapeutic agents. In this review, we introduce the immunomodulatory effects of chemotherapy and combined mechanisms of chemoimmunotherapy, followed by a summary of nanoparticle-mediated chemoimmunotherapeutic strategies used for treating TNBC. This up-to-date synthesis of relevant findings in the field merits contemplation, while considering avenues of investigation to enable advances in the field.
Collapse
Affiliation(s)
- Siyan Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lin Gu
- Breast Surgery, Jilin Province Tumor Hospital, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
43
|
Liang J, Guo S, Bai M, Huang M, Qu Y, Zhao Y, Song Y. Stimulus-responsive hybrid nanoparticles based on multiple lipids for the co-delivery of doxorubicin and Sphk2-siRNA and breast cancer therapy. Food Chem Toxicol 2022; 171:113532. [DOI: 10.1016/j.fct.2022.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
|
44
|
Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Mater Today Bio 2022; 17:100482. [DOI: 10.1016/j.mtbio.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
45
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
46
|
Jia Y, Chen S, Wang C, Sun T, Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front Bioeng Biotechnol 2022; 10:990145. [PMID: 36091467 PMCID: PMC9449492 DOI: 10.3389/fbioe.2022.990145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and high resistance to drugs and metastasis rates are the leading causes of death in BC patients. Releasing anti-cancer drugs precisely to the tumor site can improve the efficacy and reduce the side effects on the body. Natural polymers are attracting extensive interest as drug carriers in treating breast cancer. Hyaluronic acid (HA) is a natural polysaccharide with excellent biocompatibility, biodegradability, and non-immunogenicity and is a significant component of the extracellular matrix. The CD44 receptor of HA is overexpressed in breast cancer cells and can be targeted to breast tumors. Therefore, many researchers have developed nano drug delivery systems (NDDS) based on the CD44 receptor tumor-targeting properties of HA. This review examines the application of HA in NDDSs for breast cancer in recent years. Based on the structural composition of NDDSs, they are divided into HA NDDSs, Modified HA NDDSs, and HA hybrid NDDSs.
Collapse
Affiliation(s)
- Yufeng Jia
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Chenyu Wang
- Department of Information Management, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| |
Collapse
|
47
|
Prognostic and Immunological Significance of FUNDC1 in Hepatocellular Carcinoma: A Study on TCGA Mining. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8371885. [PMID: 36017155 PMCID: PMC9398860 DOI: 10.1155/2022/8371885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is an inflammation-related malignancy influenced by the immune microenvironment, such as immune tolerance and evasion. HFUN14 domain-with protein 1 (FUNDC1) is a necessary mitochondrial outer membrane protein, functioning as a receptor for hypoxia-caused mitophagy, which is related to human immunity. The relationship between HCC and FUNDC1 in terms of prognosis and immunology was demonstrated in the current investigation. Even so, the function of FUNDC1 in liver cancer is yet unknown. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were utilized for examining if FUNDC1 expression is associated with clinicopathological characteristics and prognosis. Genetic changes (mutation), DNA methylation, and their relationship with patient prognosis were identified by cBioPortal and MethSurv. Utilizing the Tumor Immune Estimation Resource (TIMER), immune checkpoints, infiltration, and immune cell biomarkers were analyzed. Utilizing the STRING database, the network of protein-protein interactions was created. Using Gene Set Enrichment Analysis, the FUNDC1 biological roles were determined (GSEA). Results FUNDC1 elevation was significantly linked with gender (p < 0.001), tumor stage (p = 0.01349), tumor grade (p < 0.001), and alpha-fetoprotein (AFP) (p < 0.001) levels in HCC. It was illustrated by ROC curve analysis that FUNDC1 had a significant diagnostic and prognostic value. The FUNDC1 genetic change rate was 0.6%. Four out of 6 DNA methylation CpG sites were associated with the HCC prognosis. FUNDC1 is associated strongly with immune cell infiltration in HCC. Moreover, FUNDC1 was positively related to immune checkpoints such as mutant-allele tumor heterogeneity (MATH) (p < 0.001), ploidy (p < 0.05), homologous recombination defect (HRD) (p < 0.001), and loss of heterozygosity (LOH). GSEA revealed significant FUNDC1 enrichment in the cell cycle, hedgehog, and MAPK signaling pathways. Conclusion FUNDC1 is a mitophagy regulator that could be a therapeutic, prognostic, and putative diagnostic biomarker for HCC.
Collapse
|
48
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
49
|
Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022; 14:957-983. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Medical Department, College of Medicine, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - M M Abdullah
- Advanced Materials & Nano-Research Centre, Department of Physics, Faculty of Science & Arts, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gulam Mustafa
- College of Pharmacy, Shaqra University, Ad-Dawadmi Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
50
|
Liang Q, Lan Y, Li Y, Cao Y, Li J, Liu Y. Crizotinib prodrug micelles co-delivered doxorubicin for synergistic immunogenic cell death induction on breast cancer chemo-immunotherapy. Eur J Pharm Biopharm 2022; 177:260-272. [PMID: 35863668 DOI: 10.1016/j.ejpb.2022.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapeutic agents can trigger the immune response via inducing immunogenic cell death (ICD), but the weak ICD effect induced by chemotherapy alone limits its lasting antitumor immunotherapy effect. A Cro polymerized prodrug carriers (POEG-b-PCro) with immunostimulatory by ICD induction was developed and co-delivered DOX to generate synergistic ICD induction for chemo-immunotherapy on breast cancer. DOX/POEG-b-PCro micelles displayed prolonged circulation in blood, efficient accumulation in tumors, internalization and then co-released DOX&Cro in tumor cells. Moreover, the DOX/POEG-b-PCro micelles synergistically triggered ICD induction by releasing the nuclear high mobility group box 1 (HMGB1) and down-regulation of c-Met level for generating chemo-immune anti-tumor actions. Importantly, the DOX/POEG-b-PCro micelles synergistically enhanced the tumor cytotoxic T lymphocytes infiltration, concomitant decreasing the immunosuppressive regulatory T (Treg) cells, accompanied with the increased cytokines secretion of IFN-γ and TNF-α, consequently displaying an improved anti-tumor activity in 4T1 breast cancer mice. Overall, POEG-b-PCro prodrug micelles co-delivered DOX could be served as a promising nano drug delivery system for synergistic ICD induction on breast cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yang Lan
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjin Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|