1
|
Wu L, Huang X, Wang M, Chen J, Chang J, Zhang H, Zhang X, Conn A, Rossiter J, Birchall M, Song W. Tunable Light-Responsive Polyurethane-urea Elastomer Driven by Photochemical and Photothermal Coupling Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19480-19495. [PMID: 38581369 DOI: 10.1021/acsami.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Light-driven soft actuators based on photoresponsive materials can be used to mimic biological motion, such as hand movements, without involving rigid or bulky electromechanical actuations. However, to our knowledge, no robust photoresponsive material with desireable mechanical and biological properties and relatively simple manufacture exists for robotics and biomedical applications. Herein, we report a new visible-light-responsive thermoplastic elastomer synthesized by introducing photoswitchable moieties (i.e., azobenzene derivatives) into the main chain of poly(ε-caprolactone) based polyurethane urea (PAzo). A PAzo elastomer exhibits controllable light-driven stiffness softening due to its unique nanophase structure in response to light, while possessing excellent hyperelasticity (stretchability of 575.2%, elastic modulus of 17.6 MPa, and strength of 44.0 MPa). A bilayer actuator consisting of PAzo and polyimide films is developed, demonstrating tunable bending modes by varying incident light intensities. Actuation mechanism via photothermal and photochemical coupling effects of a soft-hard nanophase is demonstrated through both experimental and theoretical analyses. We demonstrate an exemplar application of visible-light-controlled soft "fingers" playing a piano on a smartphone. The robustness of the PAzo elastomer and its scalability, in addition to its excellent biocompatibility, opens the door to the development of reproducible light-driven wearable/implantable actuators and lightweight soft robots for clinical applications.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Xia Huang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Meng Wang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jishizhan Chen
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jinke Chang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Xuetong Zhang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Andrew Conn
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Jonathan Rossiter
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Ear Nose and Throat and Eastman Dental Hospitals (UCLH NHS Foundation Trust), University College London, London WC1X 8EE, United Kingdom
| | - Wenhui Song
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
2
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
3
|
Zhang G, Qu Z, Tao WQ, Wang X, Wu L, Wu S, Xie X, Tongsh C, Huo W, Bao Z, Jiao K, Wang Y. Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges. Chem Rev 2023; 123:989-1039. [PMID: 36580359 DOI: 10.1021/acs.chemrev.2c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L-1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.
Collapse
Affiliation(s)
- Guobin Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Wen-Quan Tao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Xueliang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Lizhen Wu
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Siyuan Wu
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California95616, United States
| | - Xu Xie
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Chasen Tongsh
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Wenming Huo
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Zhiming Bao
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin300350, China.,National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin300350, China
| | - Yun Wang
- Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California92697-3975, United States
| |
Collapse
|
4
|
Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Poly(L‐lactic acid) and poly(ε‐caprolactone) based
ultra‐strong
and tough thermoplastic polyurethane‐urea with multi‐urea segments and oriented microstructures. J Appl Polym Sci 2022. [DOI: 10.1002/app.53145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Ze Y, Li Y, Huang L, Shi Y, Li P, Gong P, Lin J, Yao Y. Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Front Bioeng Biotechnol 2022; 10:856398. [PMID: 35402417 PMCID: PMC8990266 DOI: 10.3389/fbioe.2022.856398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Mature vasculature is important for the survival of bioengineered tissue constructs, both in vivo and in vitro; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity. Biodegradable materials play a crucial role in tissue engineering. Scaffolds made of biodegradable materials act as temporary templates, interact with cells, integrate with native tissues, and affect the results of tissue remodeling. Biodegradable ink selection, especially the choice of scaffold and sacrificial materials in indirect 3D bioprinting, has been the focus of several recent studies. The major objective of this review is to summarize the basic characteristics of biodegradable materials commonly used in indirect 3D bioprinting for vascularization, and to address recent advances in applying this technique to the vascularization of different tissues. Furthermore, the review describes how indirect 3D bioprinting creates blood vessels and vascularized tissue constructs by introducing the methodology and biodegradable ink selection. With the continuous improvement of biodegradable materials in the future, indirect 3D bioprinting will make further contributions to the development of this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leire Iturriaga
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Kyle D. Van Gordon
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Garazi Larrañaga-Jaurrieta
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Sandra Camarero‐Espinosa
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
- IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
| |
Collapse
|
9
|
Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci 2021; 9:6337-6354. [PMID: 34397056 DOI: 10.1039/d1bm00605c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging tissue engineering approach that aims to develop cell or biomolecule-laden, complex polymeric scaffolds with high precision, using hydrogel-based "bioinks". Hydrogels are water-swollen, highly crosslinked polymer networks that are soft, quasi-solid, and can support and protect biological materials. However, traditional hydrogels have weak mechanical properties and cannot retain complex structures. They must be reinforced with physical and chemical manipulations to produce a mechanically resilient bioink. Over the past few years, we have witnessed an increased use of nanoparticles and biological moiety-functionalized nanoparticles to fabricate new bioinks. Nanoparticles of varied size, shape, and surface chemistries can provide a unique solution to this problem primarily because of three reasons: (a) nanoparticles can mechanically reinforce hydrogels through physical and chemical interactions. This can favorably influence the bioink's 3D printability and structural integrity by modulating its rheological, biomechanical, and biochemical properties, allowing greater flexibility to print a wide range of structures; (b) nanoparticles can introduce new bio-functionalities to the hydrogels, which is a key metric of a bioink's performance, influencing both cell-material and cell-cell interactions within the hydrogel; (c) nanoparticles can impart "smart" features to the bioink, making the tissue constructs responsive to external stimuli. Responsiveness of the hydrogel to magnetic field, electric field, pH changes, and near-infrared light can be made possible by the incorporation of nanoparticles. Additionally, bioink polymeric networks with nanoparticles can undergo advanced chemical crosslinking, allowing greater flexibility to print structures with varied biomechanical properties. Taken together, the unique properties of various nanoparticles can help bioprint intricate constructs, bringing the process one step closer to complex tissue structure and organ printing. In this review, we explore the design principles and multifunctional properties of various nanomaterials and nanocomposite hydrogels for potential, primarily extrusion-based bioprinting applications. We illustrate the significance of biocompatibility of the designed nanocomposite hydrogel-based bioink for clinical translation and discuss the different parameters that affect cell fate after cell-nanomaterial interaction. Finally, we critically assess the current challenges of nanoengineering bioinks and provide insight into the future directions of potential hydrogel bioinks in the rapidly evolving field of bioprinting.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Avinava Roy
- Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
10
|
Wu L, Magaz A, Huo S, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds. Acta Biomater 2020; 113:177-195. [PMID: 32663664 DOI: 10.1016/j.actbio.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This in vitro study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. STATEMENT OF SIGNIFICANCE: Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration.
Collapse
|
11
|
Chen M, Zhang Y, Zhang W, Li J. Polyhedral Oligomeric Silsesquioxane-Incorporated Gelatin Hydrogel Promotes Angiogenesis during Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22410-22425. [PMID: 32349479 DOI: 10.1021/acsami.0c00714] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many approaches have been made toward the development of scaffolds with good biocompatibility and appreciable physicochemical properties to facilitate stem cell adhesion, osteogenic differentiation, and vascularization in tissue engineering. Nowadays, vascularization is a main bottleneck in tissue engineering strategies that is needed to be overcome and developed. Herein, we construct a series of polyhedral oligomeric silsesquioxane (POSS)-modified porous gelatin hydrogels with different POSS concentrations from 0 to 5 wt %, defined as X% POSS hydrogels (X = 0, 1, 2, 3, 4, 5) to support vascularized bone repair. The introduction of POSS into gelatin effectively promoted adhesive protein adsorption and integrin α5β1 expression, subsequently leading to enhanced adhesion of both rat bone marrow mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs). In vitro experiments further demonstrated that POSS-containing hybrid hydrogels more effectively support the angiogenic tube and network formation in HUVECs than the 0% POSS hydrogel. Besides, POSS-containing hybrid hydrogels showed desirable performance as a sustained release system of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2), and they further accelerated vascular network establishment and the formation of a new bone in defect regions. When the hydrogels were implanted into critical-sized rat calvarial defects in vivo, the VEGF/BMP-2-coupled 3% POSS group gained a higher blood vessel volume in the bone defect regions (5.49 ± 0.35 mm3) than the 3% POSS group (3.12 ± 0.20 mm3) and the 0% POSS group (1.57 ± 0.25 mm3), suggesting that the 3% POSS hydrogel with VEGF/BMP-2 would expedite vascularization. Based on these evaluations, our results indicated that the POSS-incorporated gelatin hydrogel would provide a promising bone graft scheme in potential clinical application of large bone defect repair.
Collapse
Affiliation(s)
- Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People's Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People's Republic of China
| |
Collapse
|
12
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
13
|
Wu L, Magaz A, Darbyshire A, Howkins A, Reynolds A, Boyd IW, Song H, Song J, Loizidou M, Emberton M, Birchall M, Song W. Thermoresponsive Stiffness Softening of Hierarchically Porous Nanohybrid Membranes Promotes Niches for Mesenchymal Stem Cell Differentiation. Adv Healthc Mater 2019; 8:e1801556. [PMID: 30945813 DOI: 10.1002/adhm.201801556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Despite the attention given to the development of novel responsive implants for regenerative medicine applications, the lack of integration with the surrounding tissues and the mismatch with the dynamic mechanobiological nature of native soft tissues remain in the current products. Hierarchical porous membranes based on a poly (urea-urethane) (PUU) nanohybrid have been fabricated by thermally induced phase separation (TIPS) of the polymer solution at different temperatures. Thermoresponsive stiffness softening of the membranes through phase transition from the semicrystalline phase to rubber phase and reverse self-assembly of the quasi-random nanophase structure is characterized at body temperature near the melting point of the crystalline domains of soft segments. The effects of the porous structure and stiffness softening on proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBM-MSCs) are investigated. The results of immunohistochemistry, histological, ELISA, and qPCR demonstrate that hBM-MSCs maintain their lineage commitment during stiffness relaxation; chondrogenic differentiation is favored on the soft and porous scaffold, while osteogenic differentiation is more prominent on the initial stiff one. Stiffness relaxation stimulates more osteogenic activity than chondrogenesis, the latter being more influenced by the synergetic coupling effect of softness and porosity.
Collapse
Affiliation(s)
- Linxiao Wu
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| | - Adrián Magaz
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| | - Arnold Darbyshire
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| | - Ashley Howkins
- Institute of Materials and ManufacturingBrunel University London Kingston Ln London, Uxbridge UB8 3PH UK
| | - Alan Reynolds
- Institute of Materials and ManufacturingBrunel University London Kingston Ln London, Uxbridge UB8 3PH UK
| | - Ian W. Boyd
- Institute of Materials and ManufacturingBrunel University London Kingston Ln London, Uxbridge UB8 3PH UK
| | - Hang Song
- School of Innovation and EntrepreneurshipDepartment of Materials Science and EngineeringSouthern University of Science and Technology No. 1088, Xueyuan Rd. Xili, Nanshan Shenzhen Guangdong 518055 China
| | - Jin‐Hua Song
- School of Innovation and EntrepreneurshipDepartment of Materials Science and EngineeringSouthern University of Science and Technology No. 1088, Xueyuan Rd. Xili, Nanshan Shenzhen Guangdong 518055 China
| | - Marilena Loizidou
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| | - Mark Emberton
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| | - Martin Birchall
- UCL Ear InstituteRoyal National Throat, Nose and Ear HospitalUniversity College London 330 Grays Inn Rd, Kings Cross London WC1X 8DA UK
| | - Wenhui Song
- Centre for Biomaterials in Surgical Reconstruction and RegenerationDivision of Surgery & Interventional ScienceUniversity College London 2QG, 10 Pond St London NW3 2PS UK
| |
Collapse
|
14
|
Cellular responses to thermoresponsive stiffness memory elastomer nanohybrid scaffolds by 3D-TIPS. Acta Biomater 2019; 85:157-171. [PMID: 30557696 DOI: 10.1016/j.actbio.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests the contribution of the dynamic mechanical properties of the extracellular matrix (ECM) to regulate tissue remodeling and regeneration. Following our recent study on a family of thermoresponsive 'stiffness memory' elastomeric nanohybrid scaffolds manufactured via an indirect 3D printing guided thermally-induced phase separation process (3D-TIPS), this work reports in vitro and in vivo cellular responses towards these scaffolds with different initial stiffness and hierarchically interconnected porous structure. The viability of mouse embryonic dermal fibroblasts in vitro and the tissue responses during the stiffness softening of the scaffolds subcutaneously implanted in rats for three months were evaluated by immunohistochemistry and histology. Scaffolds with a higher initial stiffness and a hierarchical porous structure outperformed softer ones, providing initial mechanical support to cells and surrounding tissues before promoting cell and tissue growth during stiffness softening. Vascularization was guided throughout the digitally printed interconnected networks. All scaffolds exhibited polarization of the macrophage response from a macrophage phenotype type I (M1) towards a macrophage phenotype type II (M2) and down-regulation of the T-cell proliferative response with increasing implantation time; however, scaffolds with a more pronounced thermo-responsive stiffness memory mechanism exerted higher inflammo-informed effects. These results pave the way for personalized and biologically responsive soft tissue implants and implantable device with better mechanical matches, angiogenesis and tissue integration. Statement of Significance This work reports cellular responses to a family of 3D-TIPS thermoresponsive nanohybrid elastomer scaffolds with different stiffness softening both in vitro and in vivo rat models. The results, for the first time, have revealed the effects of initial stiffness and dynamic stiffness softening of the scaffolds on tissue integration, vascularization and inflammo-responses, without coupling chemical crosslinking processes. The 3D printed, hierarchically interconnected porous structures guide the growth of myofibroblasts, collagen fibers and blood vessels in real 3D scales. In vivo study on those unique smart elastomer scaffolds will help pave the way for personalized and biologically responsive soft tissue implants and implantable devices with better mechanical matches, angiogenesis and tissue integration.
Collapse
|
15
|
Palza H, Zapata PA, Angulo-Pineda C. Electroactive Smart Polymers for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E277. [PMID: 30654487 PMCID: PMC6357059 DOI: 10.3390/ma12020277] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023]
Abstract
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications. This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, 8370456 Santiago, Chile.
| | - Paula Andrea Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, 8350709 Santiago, Chile.
| | - Carolina Angulo-Pineda
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
| |
Collapse
|
16
|
Zhang Y, Chen M, Tian J, Gu P, Cao H, Fan X, Zhang W. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7:3266-3276. [DOI: 10.1039/c9bm00561g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biodegradable hybrid double-network hydrogel for stem cell-enhanced bone regeneration.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
17
|
Wu L, Magaz A, Wang T, Liu C, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Data of a stiffness softening mechanism effect on proliferation and differentiation of a human bone marrow derived mesenchymal stem cell line towards the chondrogenic and osteogenic lineages. Data Brief 2018; 21:133-142. [PMID: 30338287 PMCID: PMC6186969 DOI: 10.1016/j.dib.2018.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/01/2022] Open
Abstract
This article contains data related to the research article entitled “Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells” [1] (Wu et al., 2018). Cells respond to the local microenvironment in a context dependent fashion and a continuous challenge is to provide a living construct that can adapt to the viscoelasticity changes of surrounding tissues. Several materials are attractive candidates to be used in tissue engineering, but conventional manufactured scaffolds are primarily static models with well-defined and stable stiffness that lack the dynamic biological nature required to undergo changes in substrate elasticity decisive in several cellular processes key during tissue development and wound healing. A family of poly (urea-urethane) (PUU) elastomeric nanohybrid scaffolds (PUU-POSS) with thermoresponsive mechanical properties that soften by reverse self-assembling at body temperature had been developed through a 3D thermal induced phase transition process (3D-TIPS) at various thermal conditions: cryo-coagulation (CC), cryo-coagulation and heating (CC + H) and room temperature coagulation and heating (RTC + H). The stiffness relaxation and stiffness softening of these scaffolds suggest regulatory effects in proliferation and differentiation of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) towards the chondrogenic and osteogenic lineages.
Collapse
Affiliation(s)
- Linxiao Wu
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Adrián Magaz
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Tao Wang
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom.,Precision Medical Centre, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Arnold Darbyshire
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Marilena Loizidou
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Mark Emberton
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, University College London, London, United Kingdom
| | - Wenhui Song
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
18
|
Wu L, Magaz A, Wang T, Liu C, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells. Biomaterials 2018; 186:64-79. [PMID: 30296596 DOI: 10.1016/j.biomaterials.2018.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 01/24/2023]
Abstract
The cellular microenvironment is dynamic, remodeling tissues lifelong. The biomechanical properties of the extracellular matrix (ECM) influence the function and differentiation of stem cells. While conventional artificial matrices or scaffolds for tissue engineering are primarily static models presenting well-defined stiffness, they lack the responsive changes required in dynamic physiological settings. Engineering scaffolds with varying elastic moduli is possible, but often lead to stiffening and chemical crosslinking of the molecular structure with limited control over the scaffold architecture. A family of indirectly 3D printed elastomeric nanohybrid scaffolds with thermoresponsive mechanical properties that soften by reverse self-assembling at body temperature have been developed recently. The initial stiffness and subsequent stiffness relaxation of the scaffolds regulated proliferation and differentiation of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) towards the chondrogenic and osteogenic lineages over 4 weeks, as measured by immunohistochemistry, histology, ELISA and qPCR. hBM-MSCs showed enhanced chondrogenic differentiation on softer scaffolds and osteogenic differentiation on stiffer ones, with similar relative expression to that of human femoral head tissue. Overall, stiffness relaxation favored osteogenic activity over chondrogenesis in vitro.
Collapse
Affiliation(s)
- Linxiao Wu
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Adrián Magaz
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Tao Wang
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom; Precision Medical Centre, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Arnold Darbyshire
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Marilena Loizidou
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Mark Emberton
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, University College London, London, United Kingdom
| | - Wenhui Song
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, United Kingdom.
| |
Collapse
|