1
|
Luan SH, Yang YQ, Ye MP, Liu H, Rao QF, Kong JL, Wu FR. ASIC1a promotes hepatic stellate cell activation through the exosomal miR-301a-3p/BTG1 pathway. Int J Biol Macromol 2022; 211:128-139. [PMID: 35561854 DOI: 10.1016/j.ijbiomac.2022.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.
Collapse
Affiliation(s)
- Shao-Hua Luan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | | | - Man-Ping Ye
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Hui Liu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Qiu-Fan Rao
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jin-Ling Kong
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Fan-Rong Wu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
2
|
Huang Z, Khalifa MO, Gu W, Li TS. Hydrostatic pressure induces pro-fibrotic properties in hepatic stellate cells via the RhoA/ROCK signaling pathway. FEBS Open Bio 2022; 12:1230-1240. [PMID: 35357779 PMCID: PMC9157409 DOI: 10.1002/2211-5463.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Elevated interstitial fluid hydrostatic pressure is commonly observed in diseased livers. We herein examined the hypothesis that hydrostatic pressure induces hepatic stellate cells to acquire pro-fibrotic properties under pathological conditions. Human hepatic stellate cells were exposed to 50 mmHg pressure for 24 hours. Although we observed few changes of cell growth and morphology, PCR array data on the expression of fibrosis-associated genes suggested the acquisition of pro-fibrotic properties. The exposure of hepatic stellate cells to 50 mmHg pressure for 24 hours also significantly enhanced the expression of RhoA, ROCK1, α-SMA, TGF-β1 , p-MLC and p-Smad2, and this was effectively attenuated by ROCK inhibitor Y-27632. Our ex vivo experimental data suggests that elevated interstitial fluid hydrostatic pressure under pathological conditions may promote liver fibrosis by inducing acquisition of pro-fibrotic properties of hepatic stellate cells through the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
3
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. Influence of Liver Extracellular Matrix in Predicting Drug-Induced Liver Injury: An Alternate Paradigm. ACS Biomater Sci Eng 2022; 8:834-846. [PMID: 34978414 DOI: 10.1021/acsbiomaterials.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vitro drug-induced liver injury (DILI) models are promising tools for drug development to predict adverse events during clinical usage. However, the currently available DILI models are not specific or not able to predict the injury accurately. This is believed to be mainly because of failure to conserve the hepatocyte phenotype, lack of longevity, and difficulty in maintaining the tissue-specific microenvironment. In this study, we have assessed the potential of decellularized liver extracellular matrix (DLM) in retaining the hepatic cellular phenotype and functionality in the presence of a tissue-specific microenvironment along with its role in influencing the effect of the drug on hepatic cells. We show that DLM helps maintain the phenotype of the hepatic cell line HepG2, a well-known cell line for secretion of human proteins that is easily available. Also, the DLM enhanced the expression of a metabolic marker carbamoyl phosphate synthetase I (CPS1), a regulator of urea cycle, and bile salt export pump (BSEP), a marker of hepatocyte polarity. We further validated the DLM for its influence on the sensitivity of cells toward different classes of drugs. Interestingly, the coculture model, in the presence of endothelial cells and stellate cells, exhibited a higher sensitivity for both acetaminophen and trovafloxacin, a toxic compound that does not show any toxicity on preclinical screening. Thus, our results demonstrate for the first time that a multicellular combination along with DLM can be a potential and reliable DILI model to screen multiple drugs.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
4
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
5
|
Li W, Li P, Li N, Du Y, Lü S, Elad D, Long M. Matrix stiffness and shear stresses modulate hepatocyte functions in a fibrotic liver sinusoidal model. Am J Physiol Gastrointest Liver Physiol 2021; 320:G272-G282. [PMID: 33296275 PMCID: PMC8609567 DOI: 10.1152/ajpgi.00379.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular matrix (ECM) rigidity has important effects on cell behaviors and increases sharply in liver fibrosis and cirrhosis. Hepatic blood flow is essential in maintaining hepatocytes' (HCs) functions. However, it is still unclear how matrix stiffness and shear stresses orchestrate HC phenotype in concert. A fibrotic three-dimensional (3-D) liver sinusoidal model is constructed using a porous membrane sandwiched between two polydimethylsiloxane (PDMS) layers with respective flow channels. The HCs are cultured in collagen gels of various stiffnesses in the lower channel, whereas the upper channel is pre-seeded with liver sinusoidal endothelial cells (LSECs) and accessible to shear flow. The results reveal that HCs cultured within stiffer matrices exhibit reduced albumin production and cytochrome P450 (CYP450) reductase expression. Low shear stresses enhance synthetic and metabolic functions of HC, whereas high shear stresses lead to the loss of HC phenotype. Furthermore, both mechanical factors regulate HC functions by complementing each other. These observations are likely attributed to mechanically induced mass transport or key signaling molecule of hepatocyte nuclear factor 4α (HNF4α). The present study results provide an insight into understanding the mechanisms of HC dysfunction in liver fibrosis and cirrhosis, especially from the viewpoint of matrix stiffness and blood flow.NEW & NOTEWORTHY A fibrotic three-dimensional (3-D) liver sinusoidal model was constructed to mimic different stages of liver fibrosis in vivo and to explore the cooperative effects of matrix stiffness and shear stresses on hepatocyte (HC) functions. Mechanically induced alterations of mass transport mainly contributed to HC functions via typical mechanosensitive signaling.
Collapse
Affiliation(s)
- Wang Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Peiwen Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ning Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yu Du
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shouqin Lü
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - David Elad
- 5Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mian Long
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020; 47:2279-2288. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder characterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic therapies in this pathology.
Collapse
Affiliation(s)
- Mariia Zadorozhna
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
7
|
Kothari A, Rajagopalan P. The assembly of integrated rat intestinal-hepatocyte cultures. Bioeng Transl Med 2020; 5:e10146. [PMID: 31989035 PMCID: PMC6971435 DOI: 10.1002/btm2.10146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
The jejunum is the segment of the small intestine responsible for several metabolism and biotransformation functions. In this report, we have cultured rat jejunum explants in vitro and integrated them with hepatocyte cultures. We have also investigated the changes in jejunum function at different locations since spatial variations in intestinal functions have been reported previously. We divided the length of the rat jejunum into three distinct regions of approximately 9 cm each. We defined the regions as proximal (adjacent to the duodenum), medial, and distal (adjacent to the ileum). Spatiotemporal variations in functions were observed between these regions within the jejunum. Alkaline phosphatase activity (a marker of enterocyte function), decreased twofold between the proximal and distal regions at 4 hr. Lysozyme activity (a marker of Paneth cell function) increased from the proximal to the distal jejunum by 40% at 24 hr. Mucin-covered areas, a marker of goblet cell function, increased by twofold between the proximal and distal segments of the jejunum at 24 hr. When hepatocytes were integrated with proximal jejunum explants, statistically higher urea (~2.4-fold) and mucin (57%) production were observed in the jejunum explants. The integrated intestine-liver cultures can be used as a platform for future investigations.
Collapse
Affiliation(s)
- Anjaney Kothari
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | - Padmavathy Rajagopalan
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
- Department of Chemical EngineeringVirginia TechBlacksburgVirginia
- ICTAS Center for Systems Biology of Engineered TissuesVirginia TechBlacksburgVirginia
| |
Collapse
|
8
|
Oakley F, Gee LM, Sheerin NS, Borthwick LA. Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy. Curr Opin Pharmacol 2019; 49:95-101. [PMID: 31731225 PMCID: PMC6904905 DOI: 10.1016/j.coph.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or co-culture systems and in vivo model systems. While these approaches have undoubtedly enhanced our understanding of basic mechanisms, they have repeatedly failed to translate to clinical benefit. Recently, there had been a push to generate more physiologically relevant platforms to study fibrosis and identify new therapeutic targets. Here we review the state-of-the-art regarding the development and application of 3D complex cultures, bio-printing and precision cut slices to study pulmonary, hepatic and renal fibrosis.
Collapse
Affiliation(s)
- Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy M Gee
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Renal Department, Freeman Hospital, Newcastle upon Tyne, UK; Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|