1
|
Tian X, Yuan Y. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv 2024; 14:20757-20764. [PMID: 38952930 PMCID: PMC11216039 DOI: 10.1039/d4ra03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
PEGylated gold nanoparticles (PEG-AuNPs) are widely used in drug delivery, imaging and diagnostics, therapeutics, and biosensing. However, the effect of PEG dispersity on the molecular weight (M W) distribution of PEG grafted onto AuNP surfaces has been rarely reported. This study investigates the effect of PEG dispersity on the M W distribution of PEG grafted onto AuNP surfaces and its subsequent impact on protein adsorption and pharmacokinetics, by modifying AuNPs with monodisperse PEG methyl ether thiols (mPEG n -HS, n = 36, 45) and traditional polydisperse mPEG2k-SH (M W = 1900). Polydisperse PEG-AuNPs favor the enrichment of lower M W PEG fractions on their surface due to the steric hindrance effect, which leads to increased protein adsorption. In contrast, monodisperse PEG-AuNPs have a uniform length of PEG outlayer, exhibiting markedly lower yet constant protein adsorption. Pharmacokinetics analysis in tumor-bearing mice demonstrated that monodisperse PEG-AuNPs possess a significantly prolonged blood circulation half-life and enhanced tumor accumulation compared with their polydisperse counterpart. These findings underscore the critical, yet often underestimated, impacts of PEG dispersity on the in vitro and in vivo behavior of PEG-AuNPs, highlighting the role of monodisperse PEG in enhancing therapeutic nanoparticle performance.
Collapse
Affiliation(s)
- Xinsheng Tian
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University Hangzhou 310018 China
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| | - Yumin Yuan
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| |
Collapse
|
2
|
Gao W, Liang C, Zhao K, Hou M, Wen Y. Multifunctional gold nanoparticles for osteoporosis: synthesis, mechanism and therapeutic applications. J Transl Med 2023; 21:889. [PMID: 38062495 PMCID: PMC10702032 DOI: 10.1186/s12967-023-04594-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihang Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhao
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Hou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hou J, Li N, Zhang W, Zhang W. Exploring the impact of PEGylation on the cell-nanomicelle interactions by AFM-based single-molecule force spectroscopy and force tracing. Acta Biomater 2023; 157:310-320. [PMID: 36535567 DOI: 10.1016/j.actbio.2022.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
PEGylation has been considered the gold standard method for the modification of various drug delivery systems since the last century. However, the impact of PEGylation on the dynamic interaction between drug carriers and cell membranes has not been quantitatively clarified. Herein, the cellular binding and receptor-mediated endocytosis of a model PEGylated polypeptide nanomicelle were systematically investigated at the single-particle level using AFM-based single-molecule force spectroscopy (SMFS) and force tracing. A self-assembled elastin-like polypeptide (ELP) nanomicelle, which is capable of cross-linking, gastrin-releasing peptide (GRP) modification, and PEGylation was prepared. The cross-linked ELP-based nanomicelles exhibited outstanding stability in a broad temperature range of 4-40 °C, which facilitate the drug loading, as well as our cell-nanomicelle study at the single particle level. The unbinding force between the cross-linked ELP-based nanomicelles and the GRP receptor (GRPR)-containing cell (PC-3) membranes was quantitatively measured by AFM-SMFS. It is found that the PEGylated GRP-displaying nanomicelles exhibit the highest unbinding force, indicating the enhanced specific binding effect of PEGylation. Furthermore, the receptor-mediated endocytosis of the cross-linked ELP-based nanomicelles was monitored with the help of force tracing based on AFM-SMFS. Our results show that PEGylation decreases the endocytic force, duration, and engulfment depth of the PEGylated GRP-displaying nanomicelles, but increases their endocytic velocity, which results from the elimination of non-specific interactions during endocytosis. These observations demonstrate the diverse and complex roles of PEGylation on the interaction of polypeptide nanomicelles to cell membranes and may shed light on the rational design of organic polymer-based drug delivery systems aiming for active and passive targeting strategies. STATEMENT OF SIGNIFICANCE: A self-assembled elastin-like polypeptide (ELP) nanomicelle, which can be easily cross-linked, gastrin-releasing peptide (GRP) modified, and PEGylated, is designed. The AFM-SMFS experiment shows that PEGylation can enhance specific binding of the nanomicelles to the receptors on cell membranes. The force tracing experiment indicates that PEGylation decreases the endocytic force as well as engulfment depth of the nanomicelles through the elimination of non-specific interactions. PEGylation can benefit the drug delivery systems aiming at active targeting, while might not be an ideal modification for drug carriers designed for passive targeting, whose cellular uptake mainly depends on non-specific interactions.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Li
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Cai X, Jin M, Yao L, He B, Ahmed S, Safdar W, Ahmad I, Cheng DB, Lei Z, Sun T. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. J Mater Chem B 2023; 11:716-733. [PMID: 36594785 DOI: 10.1039/d2tb02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ijaz Ahmad
- Department of Animal Health, University of Agriculture, Peshawar, Pakistan
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
6
|
Wen H, Närvänen A, Jokivarsi K, Poutiainen P, Xu W, Lehto VP. A robust approach to make inorganic nanovectors biotraceable. Int J Pharm 2022; 624:122040. [PMID: 35902052 DOI: 10.1016/j.ijpharm.2022.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Nuclear medicine imaging plays an important role in nanomedicine. However, it is still challenging to develop a versatile platform to make the nonviral nanovectors used in cancer therapy biotraceable. In the present study, a robust approach to radiolabel inorganic nanovectors for SPECT and PET imaging was developed. The approach was based on the bisphosphonates (BP) conjugated on the nanovector, mesoporous silicon (PSi) nanoparticles. BP served as an efficient chelator for various radionuclides. For both of the 99mTc and 68Ga radionuclides utilized, the radiochemical purity and radiochemical yield were ∼99% and ∼90%, respectively. Because of the short decay time of the radionuclides, an easy, fast and effective PEGylation method was developed to improve the residence time in systemic circulation. Both PEG-99mTc-BP-PSi and PEG-68Ga-BP-PSi NPs, where PEGylation was performed after the labeling, had excellent colloidal and radiochemical stability in vitro. The plain particles without PEGylation accumulated fast in the reticuloendothelial system organs upon intravenous administration, while PEGylation prolonged the residence time of the particles in systemic circulation. Overall, the developed approach proved to be applicable for labeling nonviral nanovectors with various radionuclides easily and robustly. Considering the nature of mesoporous nanoparticles, the approach does not hamper the addition of other functionalities on the vector, nor its capability to carry high payloads.
Collapse
Affiliation(s)
- Huang Wen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland
| | - Ale Närvänen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70211 Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Pekka Poutiainen
- Kuopio University Hospital, University of Eastern Finland, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland.
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland.
| |
Collapse
|
7
|
Xiong W, Lan Q, Liang X, Zhao J, Huang H, Zhan Y, Qin Z, Jiang X, Zheng L. Cartilage-targeting poly(ethylene glycol) (PEG)-formononetin (FMN) nanodrug for the treatment of osteoarthritis. J Nanobiotechnology 2021; 19:197. [PMID: 34217311 PMCID: PMC8254262 DOI: 10.1186/s12951-021-00945-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Intra-articular (IA) injection is an efficient treatment for osteoarthritis, which will minimize systemic side effects. However, the joint experiences rapid clearance of therapeutics after intra-articular injection. Delivering system modified through active targeting strategies to facilitate localization within specific joint tissues such as cartilage is hopeful to increase the therapeutic effects. In this study, we designed a nanoscaled amphiphilic and cartilage-targeting polymer-drug delivery system by using formononetin (FMN)-poly(ethylene glycol) (PEG) (denoted as PCFMN), which was prepared by PEGylation of FMN followed by coupling with cartilage-targeting peptide (CollBP). Our results showed that PCFMN was approximately regular spherical with an average diameter about 218 nm. The in vitro test using IL-1β stimulated chondrocytes indicated that PCFMN was biocompatible and upregulated anabolic genes while simultaneously downregulated catabolic genes of the articular cartilage. The therapeutic effects in vivo indicated that PCFMN could effectively attenuate the progression of OA as evidenced by immunohistochemical staining and histological analysis. In addition, PCFMN showed higher intention time in joints and better anti-inflammatory effects than FMN, indicating the efficacy of cartilage targeting nanodrug on OA. This study may provide a reference for clinical OA therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaonan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xianfang Jiang
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128599] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020; 284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
As one of the most promising and effective delivery systems for targeted controlled-release drugs, nanocarriers (NCs) have been widely studied. Although the development of nanoparticle preparations is very prosperous, the safety and effectiveness of NCs are not guaranteed and cannot be precisely controlled due to the unclear processes of absorption, distribution, metabolism, and excretion (ADME), as well as the drug release mechanism of NCs in the body. Thus, the approval of NCs for clinical use is extremely rare. This paper reviews the research progress and challenges of using NCs in vivo based on a review of several hundred closely related publications. First, the ADME of NCs under different administration routes is summarized; second, the influences of the physical, chemical, and biosensitive properties, as well as targeted modifications of NCs on their disposal process, are systematically analyzed; third, the tracer technology related to the in vivo study of NCs is elaborated; and finally, the challenges and perspectives of nanoparticle research in vivo are introduced. This review may help readers to understand the current research progress and challenges of nanoparticles in vivo, as well as of tracing technology in nanoparticle research, to help researchers to design safer and more efficient NCs. Furthermore, this review may aid researchers in choosing or exploring more suitable tracing technologies to further advance the development of nanotechnology.
Collapse
|
10
|
Kazakov AG, Garashchenko BL, Ivanova MK, Vinokurov SE, Myasoedov BF. Carbon Nanomaterials for Sorption of 68Ga for Potential Using in Positron Emission Tomography. NANOMATERIALS 2020; 10:nano10061090. [PMID: 32492808 PMCID: PMC7353157 DOI: 10.3390/nano10061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022]
Abstract
In present work, carbon nanomaterials (CNMs) are investigated as potential carriers of 68Ga, which is widely used in positron emission tomography (PET) in nuclear medicine. Sorption behavior of 68Ga was studied onto CNMs of various structures and chemical compositions: nanodiamonds (ND), reduced graphite oxide (rGiO) and multi-walled carbon nanotubes (MWCNT), as well as their oxidized (ND–COOH) or reduced (rGiO–H, MWCNT–H) forms. The physicochemical properties of the nanoparticles were determined by high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, dynamic light scattering and potentiometric titration. The content of 68Ga in the solutions during the study of sorption was determined by gamma-ray spectrometry. The highest degree of 68Ga sorption was observed on ND and ND–COOH samples, and the optimal sorption conditions were determined: an aqueous solution with a pH of 5–7, m/V ratio of 50 μg/mL and a room temperature (25 °C). The 68Ga@ND and 68Ga@ND–COOH conjugates were found to be stable in a model blood solution—phosphate-buffered saline with a pH of 7.3, containing 40 g/L of bovine serum albumin: 68Ga desorption from these samples in 90 minutes was no more than 20% at 25 °C and up to 30% at 37 °C. Such a quantity of desorbed 68Ga does not harm the body and does not interfere with the PET imaging process. Thus, ND and ND–COOH are promising CNMs for using as carriers of 68Ga for PET diagnostics.
Collapse
Affiliation(s)
- Andrey G. Kazakov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Radiochemistry Laboratory, 19 Kosygin St., Moscow 119991, Russia; (B.L.G.); (M.K.I.); (S.E.V.); (B.F.M.)
- Correspondence:
| | - Bogdan L. Garashchenko
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Radiochemistry Laboratory, 19 Kosygin St., Moscow 119991, Russia; (B.L.G.); (M.K.I.); (S.E.V.); (B.F.M.)
| | - Milana K. Ivanova
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Radiochemistry Laboratory, 19 Kosygin St., Moscow 119991, Russia; (B.L.G.); (M.K.I.); (S.E.V.); (B.F.M.)
| | - Sergey E. Vinokurov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Radiochemistry Laboratory, 19 Kosygin St., Moscow 119991, Russia; (B.L.G.); (M.K.I.); (S.E.V.); (B.F.M.)
| | - Boris F. Myasoedov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Radiochemistry Laboratory, 19 Kosygin St., Moscow 119991, Russia; (B.L.G.); (M.K.I.); (S.E.V.); (B.F.M.)
- Interdepartmental Center for Analytical Research on Problems in the Field of Physics, Chemistry, and Biology, of the Russian Academy of Sciences, Bld. 6, Profsoyuznaya St. 65, Moscow 117342, Russia
| |
Collapse
|
11
|
Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, Cormode DP. Nanoparticle contrast agents for X-ray imaging applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1642. [PMID: 32441050 DOI: 10.1002/wnan.1642] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
X-ray imaging is the most widely used diagnostic imaging method in modern medicine and several advanced forms of this technology have recently emerged. Iodinated molecules and barium sulfate suspensions are clinically approved X-ray contrast agents and are widely used. However, these existing contrast agents provide limited information, are suboptimal for new X-ray imaging techniques and are developing safety concerns. Thus, over the past 15 years, there has been a rapid growth in the development of nanoparticles as X-ray contrast agents. Nanoparticles have several desirable features such as high contrast payloads, the potential for long circulation times, and tunable physicochemical properties. Nanoparticles have also been used in a range of biomedical applications such as disease treatment, targeted imaging, and cell tracking. In this review, we discuss the principles behind X-ray contrast generation and introduce new types of X-ray imaging modalities, as well as potential elements and chemical compositions that are suitable for novel contrast agent development. We focus on the progress in nanoparticle X-ray contrast agents developed to be renally clearable, long circulating, theranostic, targeted, or for cell tracking. We feature agents that are used in conjunction with the newly developed multi-energy computed tomography and mammographic imaging technologies. Finally, we offer perspectives on current limitations and emerging research topics as well as expectations for the future development of the field. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA
| | - Lenitza M Nieves
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
|
13
|
Zhang X, Guo X, Kang X, Yang H, Guo W, Guan L, Wu H, Du L. Surface Functionalization of Pegylated Gold Nanoparticles with Antioxidants Suppresses Nanoparticle-Induced Oxidative Stress and Neurotoxicity. Chem Res Toxicol 2020; 33:1195-1205. [PMID: 32125152 DOI: 10.1021/acs.chemrestox.9b00368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of their biocompatibility and biosafety, pegylated Au NPs (Au@PEG), as a nanodrug-carrier, have been widely applied in different biomedical applications, including imaging and drug delivery systems. Under such conditions, the biosafety of Au@PEG has attracted tremendous attention. However, only a small number of studies focused on the neurotoxicity of Au@PEG used as drug delivery carriers not to mention reducing the neurotoxicity of Au@PEG. To address this issue, the adverse effects of Au@PEG on human neuroblastoma SHSY5Y cells were first investigated. The results showed that 4.5 nm Au@PEG significantly induced cell apoptosis through upregulating reactive oxygen species (ROS) production and disordering the mitochondrial membrane potential. To further evaluate whether the neurotoxicity of Au@PEG could be improved through conjugating antioxidants on the surface of Au@PEG, Trolox (a vitamin E analogue)-functionalized Au@PEG (Au@Trolox) was synthesized. The results showed that the neurotoxicity of Au@PEG on SHSY5Y cells could be significantly improved by Au@Trolox. Next, mice were subjected to administration of 4.5 nm Au@PEG and Au@Trolox for 3 months. An increase of oxidative stress and a decrease in the activity of key antioxidant enzymes including glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were observed after long-term injection of Au@PEG. More importantly, both the apoptosis of neurons and the activation of astrocytes were observed in the hippocampus of mice injected with Au@PEG. In contrast, the adverse effects of Au@PEG could be improved when injected with Au@Trolox. In short, the present study provided new insights into the toxicity evaluation of nanoparticles and would help to better understand and prevent the neurotoxicity of nanomaterials used in pharmaceutics.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xueling Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoxuan Kang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hui Yang
- Immunology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Weiyi Guo
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lingmei Guan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hai Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Huang X, Wu W, Yang W, Qing X, Shao Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf B Biointerfaces 2020; 190:110891. [PMID: 32114271 DOI: 10.1016/j.colsurfb.2020.110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors which affect adolescents. Neoadjuvant chemotherapy followed by operation has become recommended for osteosarcoma treatment. Whereas, the effects of conventional chemotherapy are unsatisfactory because of multidrug resistance, fast clearance rate, nontargeted delivery, side effects and so on. Accordingly, Nanoparticle-mediated targeted drug delivery system (NTDDS) is recommended to be a novel treatment strategy for osteosarcoma. NTDDS can overcome the above obstacles by enhanced permeability and retention effect and active targeting. The active targeting of the delivery system is mainly based on ligands. In this study, we investigate and summarize the most common ligands used in the latest NTDDS for osteosarcoma. It might provide new insights into nanomedicine for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Groysbeck N, Stoessel A, Donzeau M, da Silva EC, Lehmann M, Strub JM, Cianferani S, Dembélé K, Zuber G. Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. NANOTECHNOLOGY 2019; 30:184005. [PMID: 30650397 DOI: 10.1088/1361-6528/aaff0a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Therapeutic monoclonal antibodies benefit to patients and the conjugation to gold nanoparticles (AuNPs) might bring additional activities to these macromolecules. However, the behavior of the conjugate will largely depend on the bulkiness of the AuNP and small sizes are moreover preferable for diffusion. Water-soluble thiolate-protected AuNPs having diameters of 2-3 nm can be synthesized with narrow polydispersity and can selectively react with incoming organic thiols via a SN2-like mechanism. We therefore synthesized a mixed thionitrobenzoic acid- , thioaminobenzoic acid-monolayered AuNP of 2.4 nm in diameter and developed a site-selective conjugation strategy to link the AuNP to Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody used in clinic. The water-soluble 80 kDa AuNP was fully characterized and then reacted to the hinge area of Cetuximab, which was selectively reduced using mild concentration of TCEP. The conjugation proceeded smoothly and could be analyzed by polyacrylamide gel electrophoresis, indicating the formation of a 1:1 AuNP-IgG conjugate as the main product. When added to EGFR expressing glioblastoma cells, the AuNP-Cetuximab conjugate selectively bound to the cell surface receptor, inhibited EGFR autophosphorylation and entered into endosomes like Cetuximab. Altogether, we describe a simple and robust protocol for a site-directed conjugation of a thiolate-protected AuNP to Cetuximab, which could be easily monitored, thereby allowing to assess the quality of the product formation. The conjugated 2.4 nm AuNP did not majorly affect the biological behavior of Cetuximab, but provided it with the electronic properties of the AuNP. This offers the ability to detect the tagged antibody and opens application for targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg-CNRS, UMR 7242, Laboratoire de Biotechnologie et Signalisation Cellulaire, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Finamore TA, Curtis TE, Tedesco JV, Grandfield K, Roeder RK. Nondestructive, longitudinal measurement of collagen scaffold degradation using computed tomography and gold nanoparticles. NANOSCALE 2019; 11:4345-4354. [PMID: 30793721 DOI: 10.1039/c9nr00313d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.
Collapse
Affiliation(s)
- Tyler A Finamore
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA..
| | | | | | | | | |
Collapse
|