1
|
Huang C, Qin Y, Wu S, Yu Q, Mei L, Zhang L, Zhu D. Temperature-Responsive "Nano-to-Micro" Transformed Polymersomes for Enhanced Ultrasound/Fluorescence Dual Imaging-Guided Tumor Phototherapy. NANO LETTERS 2024; 24:9561-9568. [PMID: 39042325 DOI: 10.1021/acs.nanolett.4c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The perfect integration of microbubbles for efficient ultrasound imaging and nanocarriers for intelligent tumor-targeting delivery remains a challenge in precise tumor theranostics. Herein, we exquisitely fabricated laser-activated and targeted polymersomes (abbreviated as FIP-NPs) for simultaneously encapsulating the photosensitizer indocyanine green (ICG) and the phase change agent perfluorohexane (PFH). The formulated FIP-NPs were nanosize and effectively accumulated into tumors as observed by ICG fluorescence imaging. When the temperature rose above 56 °C, the encapsulated PFH transformed from liquid to gas and the FIP-NPs underwent balloon-like enlargement without structure destruction. Impressively, the enlarged FIP-NPs fused with adjacent polymersomes to form even larger microparticles. This temperature-responsive "nano-to-micro" transformation and fusion process was clearly demonstrated, and FIP-NPs showed greatly improved ultrasound signals. More importantly, FIP-NPs achieved dramatic antitumor efficacy through ICG-mediated phototherapy. Taken together, the novel polymersomes achieved excellent ultrasound/fluorescence dual imaging-guided tumor phototherapy, providing an optimistic candidate for the application of tumor theranostics.
Collapse
Affiliation(s)
- Chenlu Huang
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yu Qin
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Shengjie Wu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Qingyu Yu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Lin Mei
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Linhua Zhang
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dunwan Zhu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
2
|
Huang S, Shang M, Guo L, Sun X, Xiao S, Shi D, Meng D, Zhao Y, Wang X, Liu R, Li J. Hydralazine loaded nanodroplets combined with ultrasound-targeted microbubble destruction to induce pyroptosis for tumor treatment. J Nanobiotechnology 2024; 22:193. [PMID: 38643134 PMCID: PMC11031971 DOI: 10.1186/s12951-024-02453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.
Collapse
Affiliation(s)
- Shuting Huang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
3
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Liu X, Zhang Y, Wu H, Tang J, Zhou J, Zhao J, Wang S. A conductive gelatin methacrylamide hydrogel for synergistic therapy of osteosarcoma and potential bone regeneration. Int J Biol Macromol 2023; 228:111-122. [PMID: 36563819 DOI: 10.1016/j.ijbiomac.2022.12.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In this study, a methacrylic gelatin/oxidized dextran/montmorillonite‑strontium/polypyrrole (GOMP) hydrogel was prepared. The GOMP hydrogel had dual network structure which was formed through photoinitiator-initiated double bond polymerization and Schiff base reaction. The network structure led to a sustained release of the antitumor drug, doxorubicin (DOX). Polypyrrole introduced the conductivity and high photothermal conversion capacity to the GOMP hydrogel, which showed a photothermal conversion efficiency of 31.61 % under 808 nm laser radiation. The GOMP hydrogel had good swelling properties in solvents. Further study showed that the GOMP hydrogel had good biocompatibility and excellent biodegradability in vitro and in vivo. The experiments of in vitro tumor therapy and in vivo anti-tumor recurrence indicated that the DOX-loaded GOMP hydrogel had synergistic effects on tumor cell apoptosis based on chemotherapy and photothermal therapy. In addition, montmorillonite‑strontium (MMT-Sr) doped in the hydrogel not only improved the mechanical properties of the hydrogel but also promoted potential bone regeneration. The multifunctional DOX-loaded GOMP hydrogel with bone regeneration, photothermal therapy, and chemotherapy functions has great potential application for treating osteosarcoma.
Collapse
Affiliation(s)
- Xiuying Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, No. 1 Yangguang Avenue, Wuhan 430200, PR China
| | - Yu Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Jingwen Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiao Zhou
- College of Chemistry and Chemical Engineering, Wuhan Textile University, No. 1 Yangguang Avenue, Wuhan 430200, PR China; Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, No. 1 Yangguang Avenue, Wuhan 430200, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
5
|
Perfluorooctylbromide-loaded fucoidan-chlorin e6 nanoparticles for tumor-targeted photodynamic therapy. Int J Biol Macromol 2022; 223:77-86. [PMID: 36336157 DOI: 10.1016/j.ijbiomac.2022.10.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Efficient delivery of a photosensitizer (PS) and oxygen to tumor tissue is critical for successful photodynamic therapy (PDT). For this purpose, we developed a fucoidan (Fu)-chlorin e6 (Ce6) nanoparticle (NP) containing perfluorooctylbromide (PFOB). Fu, a biopolymer derived from seaweed, made up the hydrophilic shell of the NP and provided specific targeting to tumor cells by P-selectin binding. Conjugation with the hydrophobic Ce6 enabled self-assembly and Ce6-generated cytotoxic reactive oxygen species to kill tumor cells upon laser irradiation. PF supplied oxygen to the hypoxic tumor tissue and increased the efficacy of the PDT. The developed Fu-Ce6-PF-NPs bound specifically to SCC7 tumor cells and killed them via a photodynamic effect on laser irradiation. High accumulation of the NPs in tumor tissue and improved tumor suppression by PDT were observed in SCC7 tumor-bearing mice. The overall data demonstrated the potential of Fu-Ce6-PF-NP as a tumor-targeting drug carrier for effective PDT.
Collapse
|
6
|
Sun L, Zuo C, Liu X, Guo Y, Wang X, Dong Z, Han M. Combined Photothermal Therapy and Lycium barbarum Polysaccharide for Topical Administration to Improve the Efficacy of Doxorubicin in the Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14122677. [PMID: 36559180 PMCID: PMC9785128 DOI: 10.3390/pharmaceutics14122677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
In order to improve the efficacy of doxorubicin in the treatment of breast cancer, we constructed a drug delivery system combined with local administration of Lycium barbarum polysaccharides (LBP) and photothermal-material polypyrrole nanoparticles (PPY NPs). In vitro cytotoxicity experiments showed that the inhibitory effect of DOX + LBP + PPY NPs on 4T1 cells under NIR (near infrared) laser was eight times that of DOX at the same concentration (64% vs. 8%). In vivo antitumor experiments showed that the tumor inhibition rate of LBP + DOX + PPY NPs + NIR reached 87.86%. The results of the H&E staining and biochemical assays showed that the systemic toxicity of LBP + DOX + PPY NPs + NIR group was reduced, and liver damage was significantly lower in the combined topical administration group (ALT 54 ± 14.44 vs. 28 ± 3.56; AST 158 ± 16.39 vs. 111 ± 20.85) (p < 0.05). The results of the Elisa assay showed that LBP + DOX + PPY NPs + NIR can enhance efficacy and reduce toxicity (IL-10, IFN-γ, TNF-α, IgA, ROS). In conclusion, LBP + DOX + PPY NPs combined with photothermal therapy can improve the therapeutic effect of DOX on breast cancer and reduce its toxic side effects.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| |
Collapse
|
7
|
Yang D, Chen Q, Zhang M, Feng G, Sun D, Lin L, Jing X. Drug-Loaded Acoustic Nanodroplet for Dual-Imaging Guided Highly Efficient Chemotherapy Against Nasopharyngeal Carcinoma. Int J Nanomedicine 2022; 17:4879-4894. [PMID: 36262190 PMCID: PMC9576276 DOI: 10.2147/ijn.s377514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chemotherapy is an important approach to treating nasopharyngeal carcinoma (NPC). Unfortunately, the lack of selectivity, insufficient tumor accumulation, uneven tumor distribution and severe systemic toxicity lead to the unsatisfactory performance of these drugs. While a more precise drug delivery, on-demand drug release, and deep diffusion of drugs (homogeneous distribution of drugs in the tumor) could improve the application, they remain challenging. Chemotherapeutic drug-loaded acoustic nanodroplet with dual-imaging capacity is expected to solve these problems. Methods Folate (Fa)-modified and doxorubicin (Dox)-loaded acoustic poly (lactic-co-glycolic acid) (PLGA), low intensity focused ultrasound (LIFU)-responsive perfluoropentane (PFP) and Fe3O4 nanoparticles (designated as Fa-Fe@P-PFP-Dox) were integrated by a double-emulsion method. After the synthesis, the LIFU-triggered acoustic droplet vaporization (ADV) effect, LIFU-triggered drug release, cell targeting capability, in vitro cell-killing effects, biodistribution, PA/MR dual imaging (PA: photoacoustic; MR: magnetic resonance), LIFU-augmented Dox distribution in tumors and chemotherapeutic efficacy of Fa-Fe@P-PFP-Dox were investigated. Results The distribution of these drug-loaded nanodroplets was clearly monitored via PA/MR dual imaging. Upon LIFU irradiation, PFP within the Fa-Fe@P-PFP-Dox nanodroplets underwent ADV, which led to the release of Dox and promoted the deep penetration of Dox in tumor tissue, eventually achieving highly efficient chemotherapy against NPC. As a result, LIFU-triggered chemotherapy exerted a highly efficient therapeutic effect with a tumor inhibition rate of 74.24 ± 7.95%. Conclusion Fa-modified and drug-loaded acoustic nanodroplets have been successfully constructed for dual-imaging guided highly efficient chemotherapy against NPC. This novel tumor drug delivery method is expected to provide an efficient, visualized, and precise personalized treatment method for NPC patients with minimal side effects.
Collapse
Affiliation(s)
- Dayan Yang
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China
| | - Qiqing Chen
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China
| | - Min Zhang
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China
| | - Guiying Feng
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China
| | - Dandan Sun
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China
| | - Ling Lin
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China,Correspondence: Ling Lin, Tel +86-8-9868642515, Email
| | - Xiangxiang Jing
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan, People’s Republic of China,Xiangxiang Jing, Email
| |
Collapse
|
8
|
Zhao T, Zhang Q, Cang F, Wu S, Jiang Y, Zhao Q, Zhou Y, Qu X, Zhang X, Jin Y, Li Y, Fu Y. Yolk-shell shaped Au-Bi 2S 3heterostructure nanoparticles for controlled drug release and combined tumor therapy. NANOTECHNOLOGY 2022; 33:455103. [PMID: 35914421 DOI: 10.1088/1361-6528/ac85c2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To fabricate a novel stimuli-responsive system enabling controlled drug release and synergistic therapy, yolk-shell shaped bismuth sulfide modified with Au nanoparticles (Au-Bi2S3) was prepared. The Au-Bi2S3nanomaterial with heterojunction structure exhibited excellent photothermal conversion efficiency and considerable free radicals yield under laser irradiation. The drug delivery capacity was confirmed by co-loading Berberine hydrochloride (BBR) and a phase change material 1-tetradecanol (PCM), which could be responsible for NIR light induced thermal controlled drug release.In vitroinvestigation demonstrated that Au-Bi2S3has cell selectivity, and with the assistance of the properties of Au-Bi2S3, the loaded drug could give full play to their cancer cell inhibition ability. Our work highlights the great potential of this nanoplatform which could deliver and control Berberine hydrochloride release as well as realize the synergistic anti-tumor strategy of photothermal therapy, photodynamic therapy and chemotherapy for tumor therapy.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Qin Zhang
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Feng Cang
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Shilong Wu
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Yu Jiang
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Qiyao Zhao
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yifan Zhou
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xiaomeng Qu
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xuesong Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, People's Republic of China
| | - Yanyan Li
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Yujie Fu
- College of Chemical Engineering and Resource Utilization Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- The College of Forestry, Beijing Forestry University, 100083, Beijing, People's Republic of China
| |
Collapse
|
9
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
10
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
11
|
Xu W, Xu L, Jia W, Mao X, Liu S, Dong H, Zhang H, Zhang Y. Nanomaterials based on phase change materials for antibacterial application. Biomater Sci 2022; 10:6388-6398. [DOI: 10.1039/d2bm01220k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presented the applications of PCM-based nanomaterials in bacterial infections. Firstly, the composition and biotoxicity were outlined. Secondly, various antibacterial tactics were highlighted. Lastly, the perspectives were discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Linfeng Xu
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Shiwei Liu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Dong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
12
|
Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021; 9:6751-6769. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yuan A, Zhang Y, Fang G, Chen W, Zeng X, Zhou H, Cai H, Zhong X. Ultrasmall MoS 2 nanodots-wrapped perfluorohexane nanodroplets for dual-modal imaging and enhanced photothermal therapy. Colloids Surf B Biointerfaces 2021; 205:111880. [PMID: 34116399 DOI: 10.1016/j.colsurfb.2021.111880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/30/2022]
Abstract
Development of a multifunctional nanotherapeutic agent with high contrast-enhanced dual-modal imaging and photothermal therapy (PTT) efficacy is of great interest. Combination of ultrasound (US) and computed tomography (CT) imaging offers high spatial resolution images, showing great potential in medical imaging. Herein, the semiconducting perfluorohexane (PFH) nanodroplets, MoS2-PFH-PLLAs, are developed by stabilizing PFH droplets with the coating shell of poly (lactic-co-glycolic acid) (PLLA) and encapsulating the droplets with photoabsorbers of ultrasmall molybdenum disulfide (MoS2) nanodots. Upon near-infrared (NIR) irradiation, the MoS2-PFH-PLLAs can absorb the NIR light and convert it into heat, which not only promotes liquid-to-gas phase transition of PFH but also triggers photothermal heating, resulting in contrast-enhanced US/CT imaging and photothermal killing effect in vitro. Furthermore, the production of microbubbles can serve as the blasting agents to collaboratively enhance PTT efficacy after NIR irradiation. When intravenously injected into tumor-bearing mice, the MoS2-PFH-PLLAs exhibit a dual-modal US/CT imaging-guided synergistically therapeutic efficacy under NIR irradiation, resulting in tumor ablation. These nanotherapeutic agents demonstrate good biocompatibility, highly contrast-enhanced US/CT imaging, and combinational enhanced PTT efficacy.
Collapse
Affiliation(s)
- Anna Yuan
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuping Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Guiting Fang
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Weijian Chen
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xueyi Zeng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huaihong Cai
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xing Zhong
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
15
|
Chen X, Zhang Y, Zhang H, Zhang L, Liu L, Cao Y, Ran H, Tian J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J Nanobiotechnology 2021; 19:82. [PMID: 33752679 PMCID: PMC7986298 DOI: 10.1186/s12951-021-00822-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide, and imposes a serious economic load. Thus, it is crucial to perform a timely and accurate diagnosis and monitoring in the early stage of myocardial ischemia. Currently, nanoparticles (NPs) have emerged as promising tools for multimodal imaging, because of their advantages of non-invasion, high-safety, and real-time dynamic imaging, providing valuable information for the diagnosis of heart diseases. RESULTS In this study, we prepared a targeted nanoprobe (termed IMTP-Fe3O4-PFH NPs) with enhanced ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) performance for direct and non-invasive visual imaging of ischemic myocardium in a rat model. This successfully designed nanoprobe had excellent properties such as nanoscale size, good stability, phase transformation by acoustic droplet vaporization (ADV), and favorable safety profile. Besides, it realized obvious targeting performance toward hypoxia-injured cells as well as model rat hearts. After injection of NPs through the tail vein of model rats, in vivo imaging results showed a significantly enhanced US/PA/MR signal, well indicating the remarkable feasibility of nanoprobe to distinguish the ischemic myocardium. CONCLUSIONS IMTP-Fe3O4-PFH NPs may be a promising nanoplatform for early detection of ischemic myocardium and targeted treatment under visualization for the future.
Collapse
Affiliation(s)
- Xiajing Chen
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yanan Zhang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Lingjuan Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jie Tian
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
16
|
Si Y, Yue J, Liu Z, Li M, Du F, Wang X, Dai Z, Hu N, Ju J, Gao S, Wang X, Yuan P. Phase-Transformation Nanoparticle-Mediated Sonodynamic Therapy: An Effective Modality to Enhance Anti-Tumor Immune Response by Inducing Immunogenic Cell Death in Breast Cancer. Int J Nanomedicine 2021; 16:1913-1926. [PMID: 33707946 PMCID: PMC7943766 DOI: 10.2147/ijn.s297933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Immunologically quiescent of breast cancer cells has been recognized as the key impediment for the breast cancer immunotherapy. In this study, we aimed to investigate the role of nanoparticle-mediated sonodynamic therapy (SDT) in promoting anti-tumor immune of breast cancer cells and its potential immune mechanisms. Materials and Methods The phase-transformation nanoparticles (LIP-PFH nanoparticles) were in-house prepared and its physiochemical characters were detected. The CCK-8 assay, apoptosis analysis and Balb/c tumor model establishment were used to explore the anti-tumor effect of LIP-PFH nanoparticles triggered by low-intensity focused ultrasound (LIFU) both in vitro and in vivo. Flow cytometry and immunohistochemistry of CD4+T, CD8+T, CD8+PD-1+T in blood, spleen and tumor tissue were performed to represent the change of immune response. Detection of immunogenic cell death (ICD) markers was examined to study the potential mechanisms. Results LIP-PFH nanoparticles triggered by LIFU could inhibit the proliferation and promote the apoptosis of 4T1 cells both in vitro and in vivo. CD4+T and CD8+T cell subsets were significantly increased in blood, spleen and tumor tissue, meanwhile CD8+PD-1+T cells were reduced, indicating enhancement of anti-tumor immune response of breast cancer cells in the nanoparticle-mediated SDT group. Detection of ICD markers (ATP, high-mobility group box B1, and calreticulin) and flow cytometric analysis of dendritic cell (DC) maturity further showed that the nanoparticle-mediated SDT can promote DC maturation to increase the proportion of cytotoxic T cells by inducing ICD of breast cancer cells. Conclusion The therapy of nanoparticles-mediated SDT can effectively enhance anti-tumor immune response of breast cancer.
Collapse
Affiliation(s)
- Yiran Si
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhaoyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Mo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Feng Du
- China Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhong Dai
- Department of Medical Oncology, Cancer Hospital of Huanxing Chaoyang District, Beijing, 100005, People's Republic of China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jie Ju
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Songlin Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| |
Collapse
|
17
|
Peng F, Zhao F, Shan L, Li R, Jiang S, Zhang P. Black phosphorus nanosheets-based platform for targeted chemo-photothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111467. [PMID: 33302151 DOI: 10.1016/j.colsurfb.2020.111467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
As a new member of two-dimensional (2D) nanomaterials, black phosphorus (BP) has been considered as efficient photothermal therapy (PTT) agents owing to its excellent photothermal efficiency and biodegradability. Herein, a multifunctional nanoplatform based on black phosphorus nanosheets (BP NSs) was developed for chemo-photothermal synergistic cancer therapy. The BP NSs were successfully prepared by a liquid exfoliation technique. Doxorubicin (DOX), as a model drug, was loaded into the cavity of poly (amidoamine) (PAMAM) dendrimer using thin film hydration method. Then, PAMAM@DOX was coated on the surface of BP NSs using an electrostatic adsorption method that combined bath sonication with magnetic stirring. Hyaluronic acid (HA) was also modified onto the BP NS-PAMAM@DOX through electrostatic adsorption. PAMAM and HA layer could effectively isolate BP NSs from water and air to improve physiological stability. BP NSs and BP NS-PAMAM@DOX-HA were characterized by particle size, zeta potential, morphology, UV-vis-NIR absorption spectra, stability, photothermal performance and photothermal stability. This nanosystem exhibited a good pH and near infrared (NIR) dual-responsive drug release property. In addition, the obtained BP NS-PAMAM@D OX-HA nanocomposites possessed excellent PTT efficiency both in vitro and in vivo. The in vitro cell experiments suggested that the targeted BP NS-PAMAM@DOX-HA presented greater cytotoxicity and higher cellular uptake efficiency. Tumor xenograft model was established in BALB/C mice. The therapeutic effect of BP NS-PAMAM@DOX-HA was further augmented under 808 nm laser irradiation, displaying superior antitumor effect in comparison with chemotherapy or PTT alone. Such a biodegradable BP NS-based platform provide new insights for the rational design of PTT-based combinational cancer therapy.
Collapse
Affiliation(s)
- Feifei Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Fangxue Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Linwei Shan
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruirui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shanshan Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
18
|
Liu X, Zhang M, Yan D, Deng G, Wang Q, Li C, Zhao L, Lu J. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater Sci 2020; 8:4067-4072. [PMID: 32648564 DOI: 10.1039/d0bm00623h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein explored a smart Fe-HPPy@Au/DOX theranostic agent for CT diagnosis and PTT/chemotherapy/CDT synergistic treatment of cancer. When the Fe-HPPy@Au/DOX theranostic agent entered the tumor, the tumor environment accelerated the trapped Fe ions release to catalyze the production of ˙OH for CDT. NIR irradiation drove the PTT, and at the same time improved the CDT by increasing the production of ˙OH and triggered DOX release for chemotherapy. In addition, the Au nanoparticles on the surface of Fe-HPPy@Au nanocomposites could be used as a CT imaging agent and catalyzer to produce H2O2 for enhanced CDT.
Collapse
Affiliation(s)
- Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu Y, Zhang G, Li M, Ma L, Huang J, Qiu L. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer. Bioconjug Chem 2020; 31:2008-2020. [PMID: 32628454 DOI: 10.1021/acs.bioconjchem.0c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Guonan Zhang
- Department of Gynecological Oncology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Meiying Li
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Ji D, Wang Q, Zhao Q, Tong H, Yu M, Wang M, Lu T, Jiang C. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J Nanobiotechnology 2020; 18:86. [PMID: 32513194 PMCID: PMC7281922 DOI: 10.1186/s12951-020-00645-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) were activated and secreted excessive amounts of extracellular matrix (ECM) proteins during pathogenetic progress of liver fibrosis. Germacrone (GMO) and miR-29b can play an important role in inhibiting growth of HSCs and production of type I collagen. GMO and miR-29b were co-encapsulated into nanoparticles (NPs) based on poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA). Then, NPs were modified with cyclic RGD peptides (cRGDfK). cRGDfK is an effective ligand to bind integrin αvβ3 and increase the targeting ability for fibrotic liver. GMO- and miR-29b-loaded NPs exhibited great cytotoxicity to activated HSCs and significantly inhibited production of type I collagen. Liver fibrosis model of mice was induced by administration of carbon tetrachloride. Great targeting ability was achieved in liver fibrotic mice treated with cRGD-modified NPs. Significant ant-fibrotic effects have been presented based on hematoxylin and eosin (H&E), Masson and Sirius Red staining results of liver tissues collected from mice treated with drug-loaded NPs. All these results indicate GMO- and miR-29b-loaded cRGD-modified NPs have the potential for clinical use to treat liver fibrosis.
Collapse
Affiliation(s)
- De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China
| | - Huangjin Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mengting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chengxi Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China. .,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Li Y, Liu R, Liu L, Zhang Y, Sun J, Ma P, Wu Y, Duan S, Zhang L. Study on phase transition and contrast-enhanced imaging of ultrasound-responsive nanodroplets with polymer shells. Colloids Surf B Biointerfaces 2020; 189:110849. [DOI: 10.1016/j.colsurfb.2020.110849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/01/2022]
|
22
|
Lv S, Miao Y, Liu D, Song F. Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes. Chembiochem 2020; 21:2098-2110. [PMID: 32202062 DOI: 10.1002/cbic.202000089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Indexed: 12/11/2022]
Abstract
Photothermal therapy (PTT) has attracted great attention due to its noninvasive and effective use against cancer. Various photothermal agents (PTAs) including organic and inorganic PTAs have been developed in the last decades. Organic PTAs based on small-molecule dyes exhibit great potential for future clinical applications considering their good biocompatibility and easy chemical modification or functionalization. In this review, we discuss the recent progress of organic PTAs based on small-molecule dyes for enhanced PTT. We summarize the strategies to improve the light penetration of PTAs, methods to enhance their photothermal conversion efficiency, how to optimize PTAs' delivery into deep tumors, and how to resist photobleaching under repeated laser irradiation. We hope that this review can rouse the interest of researchers in the field of PTAs based on small-molecule dyes and help them to fabricate next-generation PTAs for noninvasive cancer therapy.
Collapse
Affiliation(s)
- Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Yuyang Miao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
23
|
Bhat A, Graham AR, Trivedi H, Hogan MK, Horner PJ, Guiseppi-Elie A. Engineering the ABIO-BIO interface of neurostimulation electrodes using polypyrrole and bioactive hydrogels. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Following spinal cord injury, the use of electrodes for neurostimulation in animal models has been shown to stimulate muscle movement, however, the efficacy of such treatment is impaired by increased interfacial impedance caused by fibrous encapsulation of the electrode. Sputter-deposited gold-on-polyimide electrodes were modified by potentiostatic electrodeposition of poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate): sulfopropyl methacrylate [P(Py-co-PyBA-conj-AEMA):SPMA] to various charge densities (0–100 mC/cm2) to address interfacial impedance and coated with a phosphoryl choline containing bioactive hydrogel to address biocompatibility at the ABIO-BIO interface. Electrodes were characterized with scanning electron microscopy (surface morphology), multiple-scan rate cyclic voltammetry (peak current and electroactive area), and electrochemical impedance spectroscopy (charge transfer resistance and membrane resistance). SEM analysis and electroactive area calculations identified films fabricated with a charge density of 50 mC/cm2 as well suited for neurostimulation electrodes. Charge transfer resistance demonstrated a strong inverse correlation (−0.83) with charge density of electrodeposition. On average, the addition of polypyrrole and hydrogel to neurostimulation electrodes decreased charge transfer resistance by 82 %. These results support the use of interfacial engineering techniques to mitigate high interfacial impedance and combat the foreign body response towards epidurally implanted neurostimulation electrodes.
Collapse
Affiliation(s)
- Ankita Bhat
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
| | - Alexa R. Graham
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
| | - Hemang Trivedi
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Matthew K. Hogan
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Philip J. Horner
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
- Department of Electrical and Computer Engineering , Texas A&M University , College Station, TX 77843 , USA
- ABTECH Scientific, Inc., Biotechnology Research Park , 800 East Leigh Street , Richmond, VA 23219 , USA , Tel.: +1(979) 458 1239, Fax: +1(979) 845 4450
| |
Collapse
|
24
|
Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ, Kim EJ, Kang L, Chung BG. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. NANO CONVERGENCE 2020; 7:10. [PMID: 32180051 PMCID: PMC7076105 DOI: 10.1186/s40580-020-0220-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
We developed the microfluidic co-culture platform to study photothermal therapy applications. We conjugated folic acid (FA) to target breast cancer cells using reduced graphene oxide (rGO)-based functional nanomaterials. To characterize the structure of rGO-based nanomaterials, we analyzed the molecular spectrum using UV-visible and Fourier-transform infrared spectroscopy (FT-IR). We demonstrated the effect of rGO-FA-based nanomaterials on photothermal therapy of breast cancer cells in the microfluidic co-culture platform. From the microfluidic co-culture platform with breast cancer cells and human umbilical vein endothelial cells (HUVECs), we observed that the viability of breast cancer cells treated with rGO-FA-based functional nanomaterials was significantly decreased after near-infrared (NIR) laser irradiation. Therefore, this microfluidic co-culture platform could be a potentially powerful tool for studying cancer cell targeting and photothermal therapy.
Collapse
Affiliation(s)
- Seok Gyu Mun
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | | | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | - Lifeng Kang
- School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
25
|
Li X, Lu C, Xia W, Quan G, Huang Y, Bai X, Yu F, Xu Q, Qin W, Liu D, Pan X. Poly(L-Glutamic Acid)-Based Brush Copolymers: Fabrication, Self-assembly, and Evaluation as Efficient Nanocarriers for Cationic Protein Drug Delivery. AAPS PharmSciTech 2020; 21:78. [PMID: 31970547 DOI: 10.1208/s12249-020-1624-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023] Open
Abstract
Protein drugs were considered to be the first choice to treat many human diseases, but their clinical application was usually limited by their short half-life and lack of validated targeted therapy. Here, a series of folate-functionalized poly(ethylene glycol)-b-(poly(2-aminoethyl-L-glutamate)-g-poly(L-glutamic acid))s (FA-PEG-b-(PELG-g-PLGA)s) were designed as tumor-targeted carriers for cationic protein delivery. Compared with traditional copolymers consisting of PEG and linear charged hydrophilic blocks, FA-PEG-b-(PELG-g-PLGA) with brush-like polyelectrolyte segments were beneficial to improving their electrostatic interactions with loading protein molecules, thus increasing drug-loading stability and protecting encapsulated proteins from degradation. The designed polymer brushes could efficiently encapsulate cytochrome C (CytC), a cationic model protein, to form polyion complex (PIC) micelles with an average particle size of approximately 200 nm. An in vitro drug release study showed that the drug-loading stability of the formed PIC micelles was largely improved. The functionalization of the block copolymer carriers with a targeting folate group enhanced the tumor cell growth inhibition and total apoptotic rates induced by CytC. Our results shed light on the unique advantages of brush-like polymer carriers in delivering cationic proteins, and the poly(L-glutamic acid)-based linear-brush diblock copolymers could be applied as a versatile delivery platform for molecular targeting in cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wenquan Xia
- Shantou University Medical College, Shantou, 515041, China
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuequn Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feiyuan Yu
- Shantou University Medical College, Shantou, 515041, China
| | - Qian Xu
- Shantou University Medical College, Shantou, 515041, China
| | - Wanbing Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daojun Liu
- Shantou University Medical College, Shantou, 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Yaqiong LP, Ruiqing LMD, Shaobo DMD, Lianzhong ZMD. Advances in Targeted Tumor Diagnosis and Therapy Based on Ultrasound-Responsive Nanodroplets. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2020. [DOI: 10.37015/audt.2020.200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Zhang T, Jiang Z, Xve T, Sun S, Li J, Ren W, Wu A, Huang P. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. NANOSCALE 2019; 11:21759-21766. [PMID: 31482919 DOI: 10.1039/c9nr05671h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing nanocarriers with high drug loading capacity is a challenge, which limits the effective delivery of drugs to solid tumors. Here, we reported a one-pot synthesis of hollow nanoparticles (NPs) encapsulated by doxorubicin (DOX) and modified with polydopamine (PDA) to form PDA@DOX NPs for breast cancer treatment. PDA@DOX NPs demonstrated exceptionally high capacity (53.16%) for loading DOX. In addition, when PDA@DOX NPs were administered systemically, they exhibited responsive aggregation in the tumor sites and demonstrated a good controlled release effect for DOX due to the weak acidic environment of the tumor sites and targeting near-infrared (NIR) light irradiation. The PDA outer layer absorbed the near-infrared (NIR) light and facilitated simultaneous generation of heat energy for destroying the tumor cells to release the drug upon NIR irradiation. Moreover, this NIR-activated combined/synergistic therapy exhibited remarkably complete tumor growth suppression in a breast cancer mouse model. Importantly, NPs exhibited a good ultrasound performance both in vitro and in vivo, which could monitor the treatment process. In conclusion, this NIR-activated PDA@DOX NP system is demonstrated as a good US-guided combination (chemotherapy + PTT) therapy platform with high loading capacity and controlled drug release characteristics, which is promising for the treatment of breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|