1
|
Zhu JC, Wang H, Wu CX, Zhang KQ, Ye H. Tailoring silk fibroin fibrous architecture by a high-yield electrospinning method for fast wound healing possibilities. Biotechnol Bioeng 2024; 121:3224-3238. [PMID: 38924076 DOI: 10.1002/bit.28783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large-area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue-derived mesenchymal stem cells (AD-MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD-MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency.
Collapse
Affiliation(s)
- Jia-Chen Zhu
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, Jiangsu, China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Chen-Xing Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Hua Ye
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, Jiangsu, China
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Wang Y, Liu M, Zhang W, Liu H, Jin F, Mao S, Han C, Wang X. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine. BURNS & TRAUMA 2024; 12:tkae039. [PMID: 39350780 PMCID: PMC11441985 DOI: 10.1093/burnst/tkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fang Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shulei Mao
- Department of Burns and Plastic Surgery, Quhua Hospital of Zhejiang, 62 Wenchang Road, Quhua, Quzhou 324004, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
3
|
Ding Q, Liu W, Zhang S, Sun S, Yang J, Zhang L, Wang N, Ma S, Chai G, Shen L, Gao Y, Ding C, Liu X. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects. Carbohydr Polym 2024; 336:122115. [PMID: 38670750 DOI: 10.1016/j.carbpol.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China.
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
4
|
Chi H, Qiu Y, Ye X, Shi J, Li Z. Preparation strategy of hydrogel microsphere and its application in skin repair. Front Bioeng Biotechnol 2023; 11:1239183. [PMID: 37555079 PMCID: PMC10405935 DOI: 10.3389/fbioe.2023.1239183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, hydrogel microsphere has attracted much attention due to its great potential in the field of skin repair. This paper reviewed the recent progress in the preparation strategy of hydrogel microsphere and its application in skin repair. In this review, several preparation methods of hydrogel microsphere were summarized in detail. In addition, the related research progress of hydrogel microspheres for skin repair was reviewed, and focused on the application of bioactive microspheres, antibacterial microspheres, hemostatic microspheres, and hydrogel microspheres as delivery platforms (hydrogel microspheres as a microcarrier of drugs, bioactive factors, or cells) in the field of skin repair. Finally, the limitations and future prospects of the development of hydrogel microspheres and its application in the field of skin repair were presented. It is hoped that this review can provide a valuable reference for the development of the preparation strategy of hydrogel microspheres and promote the application of hydrogel microspheres in skin repair.
Collapse
Affiliation(s)
- Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Yunqi Qiu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Ye
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jielin Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Yuan X, Duan X, Enhejirigala, Li Z, Yao B, Song W, Wang Y, Kong Y, Zhu S, Zhang F, Liang L, Zhang M, Zhang C, Kong D, Zhu M, Huang S, Fu X. Reciprocal interaction between vascular niche and sweat gland promotes sweat gland regeneration. Bioact Mater 2023; 21:340-357. [PMID: 36185745 PMCID: PMC9483744 DOI: 10.1016/j.bioactmat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
|
6
|
Hydrogel-Based Tissue-Mimics for Vascular Regeneration and Tumor Angiogenesis. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Weisel A, Cohen R, Spector JA, Sapir-Lekhovitser Y. Accelerated vascularization of a novel collagen hydrogel dermal template. J Tissue Eng Regen Med 2022; 16:1173-1183. [PMID: 36219532 DOI: 10.1002/term.3356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023]
Abstract
Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2-4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.
Collapse
Affiliation(s)
- Adam Weisel
- FesariusTherapeutics, Inc, Brooklyn, New York, USA
| | | | - Jason A Spector
- FesariusTherapeutics, Inc, Brooklyn, New York, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, New York, New York, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
8
|
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, Rnjak-Kovacina J, Gawlitta D, Woodfield TBF, Lim KS. Development and Characterization of Gelatin-Norbornene Bioink to Understand the Interplay between Physical Architecture and Micro-Capillary Formation in Biofabricated Vascularized Constructs. Adv Healthc Mater 2022; 11:e2101873. [PMID: 34710291 DOI: 10.1002/adhm.202101873] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Gretel S Major
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Pau Atienza-Roca
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Alessia Longoni
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Cesar R Alcala-Orozco
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2006, Australia
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| |
Collapse
|
9
|
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. NANO-MICRO LETTERS 2021; 13:182. [PMID: 34409511 PMCID: PMC8374027 DOI: 10.1007/s40820-021-00697-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
| | | | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, viale Rinaldo Piaggio 34, 56 025, Pontedera, Pisa, Italy
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Li X, You R, Zhang Q, Yan S, Luo Z, Qu J, Li M. Engineering vascularized dermal grafts by integrating a biomimetic scaffold and Wharton's jelly MSC-derived endothelial cells. J Mater Chem B 2021; 9:6466-6479. [PMID: 34364307 DOI: 10.1039/d1tb00857a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering aims to generate functional tissue constructs with the necessary scaffold properties for cell colonization and the establishment of a vascular network. However, treatment of tissue defects using synthetic scaffolds remains a challenge mainly due to insufficient and slow vascularization. Our previous study developed a macroporous silk fibroin scaffold with a nanofibrous microstructure, and demonstrated that the nanofibrous structure can promote the viability of endothelial cells (ECs) and guide cell migration. Further studies are needed to clarify the effect of scaffold microstructures on cell-mediated vascularization. Here, we investigated the efficacy of EC-seeded nanofibrous scaffolds in improving vascularization in vivo. ECs derived from induced human Wharton's Jelly mesenchymal stem cells served as a potential source for cell transplantation. The cell-seeded scaffolds were implanted into dermal defects of SD rats, demonstrating that the multiscale hierarchical design significantly improved the capacity of transplanted cells to promote and accelerate neovascularization and dermal reconstruction via enhancing cell infiltration, collagen deposition and growth factor expression. Our findings provide new insight into the development of degradable macroporous composite materials with 3D microstructures as tissue engineering scaffolds with enhanced vascularization functions, and also provide new treatment options for cell transplantation.
Collapse
Affiliation(s)
- Xiufang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, Coradin T, Hélary C. Nanostructured Dense Collagen-Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004213. [PMID: 33854901 PMCID: PMC8025010 DOI: 10.1002/advs.202004213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/15/2023]
Abstract
Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacao999078China
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Olivier Ronsin
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Basile Gravez
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Nicolette Farman
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tristan Baumberger
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Frédéric Jaisser
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Thibaud Coradin
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Christophe Hélary
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| |
Collapse
|
12
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
13
|
Li G, Han Q, Lu P, Zhang L, Zhang Y, Chen S, Zhang P, Zhang L, Cui W, Wang H, Zhang H. Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2603048. [PMID: 32851386 PMCID: PMC7436332 DOI: 10.34133/2020/2603048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Liling Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Hongbo Zhang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
14
|
Jahangirian H, Azizi S, Rafiee-Moghaddam R, Baratvand B, Webster TJ. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019; 9:E619. [PMID: 31627453 PMCID: PMC6843632 DOI: 10.3390/biom9100619] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
In recent decades, regenerative medicine has merited substantial attention from scientific and research communities. One of the essential requirements for this new strategy in medicine is the production of biocompatible and biodegradable scaffolds with desirable geometric structures and mechanical properties. Despite such promise, it appears that regenerative medicine is the last field to embrace green, or environmentally-friendly, processes, as many traditional tissue engineering materials employ toxic solvents and polymers that are clearly not environmentally friendly. Scaffolds fabricated from plant proteins (for example, zein, soy protein, and wheat gluten), possess proper mechanical properties, remarkable biocompatibility and aqueous stability which make them appropriate green biomaterials for regenerative medicine applications. The use of plant-derived proteins in regenerative medicine has been especially inspired by green medicine, which is the use of environmentally friendly materials in medicine. In the current review paper, the literature is reviewed and summarized for the applicability of plant proteins as biopolymer materials for several green regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Susan Azizi
- Applied Science and Technology Education Center of Ahvaz Municipality, Ahvaz 617664343, Iran.
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Bahram Baratvand
- Department of Physiotherapy, Faculty of Health and Sport, Mahsa University, Bandar Saujana Putra, Jenjarum Selangor 42610, Malaysia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Hu X, Gao Z, Tan H, Wang H, Mao X, Pang J. An Injectable Hyaluronic Acid-Based Composite Hydrogel by DA Click Chemistry With pH Sensitive Nanoparticle for Biomedical Application. Front Chem 2019; 7:477. [PMID: 31334222 PMCID: PMC6617958 DOI: 10.3389/fchem.2019.00477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Hydrogels with multifunctional properties attracted intensively attention in the field of tissue engineering because of their excellent performance. Also, object-oriented design had been supposed to an effective and efficient method for material design as cell scaffold in the field of tissue engineering. Therefore, a scaffold-oriented injectable composite hydrogel was constructed by two components. One was pH-sensitive bifunctional nanoparticles for growth factor delivery to improve biofunctionability of hydrogel scaffold. The other was Diels-alder click crosslinked hyaluronic acid hydrogel as matrix. pH dependent release behavior of nanoparticle component was confirmed by results. And, its bioactivity was verified by in vitro cell culture evaluation. In consideration of high-efficiency and effectiveness, low toxicity, controllability and reversibility, dynamic covalent and reversible Diels-alder click chemistry was used to design a HA hydrogel with two kinds of crosslinking points. The properties of hydrogel like gelation time and swelling ratio were influenced by pH value and polymer concentration. Composite hydrogel was formed by in situ polymerization, which exhibited acceptable mechanical property as a scaffold for biomedical field. Lastly, in vitro evaluation from results of viability, DNA content and cell morphology confirmed that hydrogels could maintain cell activity and support cell growth. Compared with pure hydrogel, composite hydrogel possessed better properties.
Collapse
Affiliation(s)
- Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Ziyu Gao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huaping Tan
- Biomaterials for Organogenesis Laboratory, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huiming Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xincheng Mao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Juan Pang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|