1
|
Ghattas M, Dwivedi G, Chevrier A, Horn-Bourque D, Alameh MG, Lavertu M. Chitosan immunomodulation: insights into mechanisms of action on immune cells and signaling pathways. RSC Adv 2025; 15:896-909. [PMID: 39802469 PMCID: PMC11719903 DOI: 10.1039/d4ra08406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked N-acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation. This review provides a comprehensive overview of the current understanding of the in vitro immunomodulatory effects of chitosan. This information may facilitate the development of chitosan-based therapies and vaccine adjuvants for various immune-related diseases.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Garima Dwivedi
- Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Anik Chevrier
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Delano Horn-Bourque
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Mohamad-Gabriel Alameh
- Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
- Penn Institute for RNA Innovation, University of Pennsylvania Philadelphia PA USA
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| |
Collapse
|
2
|
Chen X, Wu Y, Song P, Feng L, Zhou Y, Shi J, Dong N, Qiao W. Matrix Metalloproteinase-Responsive Controlled Release of Self-Assembly Nanoparticles Accelerates Heart Valve Regeneration In Situ by Orchestrating Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403351. [PMID: 39535930 PMCID: PMC11727384 DOI: 10.1002/advs.202403351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
In situ tissue engineering heart valves (TEHVs) are the most promising way to overcome the defects of existing valve prostheses. Despite their promising prospects, the clinical translation of TEHVs remains a formidable challenge, mainly due to unpredictable host interactions post-implantation. An immunomodulatory idea based on hydrogel encapsulation of nanoparticle-coated heart valve scaffolds is introduced. Specifically, galactose-modified human serum albumin nanoparticles (miR-93@HSA NPs) to deliver microRNA-93 mimics are utilized, which target macrophages and induce their differentiation into the anti-inflammatory M2 subtype, fostering a conducive immune microenvironment. Matrix metalloproteinase (MMP)-responsive hydrogel is used to encapsulate the nanoparticles, enabling targeted and sustained release. Results show that the miR-93@HSA NPs exhibit excellent ability to induce macrophage polarization toward the M2 phenotype. A decellularized valve modified with hydrogel reveals MMP-response release of the miR-93@HSA NPs. In vitro, the immunomodulatory heart valve possesses good endocytocompatibility and effectively reprograms macrophages when cocultured with HUVECs or RAW264.7 macrophages. In vivo, this valve scaffold promises to mitigate early inflammatory damage and provide a pro-endothelialization niche for scaffolds' constructive remodeling. With the use of cell coculture systems and transcriptome sequencing, the mechanism of immune-modulating scaffold accelerating endothelialization is being elucidated. The immunomodulatory heart valve scaffold holds promising potential for clinical translation.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Cardiovascular SurgeryZhongnan HospitalWuhan UniversityWuhanHubei430071China
| | - Yunlong Wu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Peng Song
- School of Chemistry and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Liandong Feng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic DiseasesMinda Hospital of Hubei Minzu UniversityEnshi445000China
| | - Ying Zhou
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiawei Shi
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Nianguo Dong
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Weihua Qiao
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
3
|
Pereira Vasconcelos D, Leite Pereira C, Couto M, Neto E, Ribeiro B, Albuquerque F, Freitas A, Alves CJ, Klinkenberg G, McDonagh BH, Schmid RB, Seitz AM, de Roy L, Ignatius A, Haaparanta A, Muhonen V, Sarmento B, Lamghari M. Nanoenabled Immunomodulatory Scaffolds for Cartilage Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage regeneration is a challenge in tissue engineering. Although diverse materials have been developed for this purpose, cartilage regeneration remains suboptimal. The integration of nanomaterials into 3D network materials holds great potential in the improvement of key mechanical properties, particularly important for osteochondral replacement scaffolds and even to function as carriers for disease‐modifying drugs or other regulatory signals. In this study, a simple yet effective cell‐free nanoenabled Col‐PLA scaffold specially designed to enhance cartilage regeneration and modulate inflammatory response is proposed, by incorporating poly(lactic‐co‐glycolic acid) (PLGA) ibuprofen nanoparticles (NPs) into a collagen/polylactide (Col‐PLA) matrix. The developed nanoenabled scaffold successfully decreases IL‐1β release and leads to primary human chondrocytes survival, ultimately restoring extracellular matrix (ECM) production under inflammatory conditions. The nanoenabled Col‐PLA scaffolds secretome effectively decreases macrophage invasion in vitro, as well as neutrophil infiltration and inflammatory mediators’, namely the complement component C5/C5a, C‐reactive protein, IL‐1β, MMP9, CCL20, and CXCL1/KC production in vivo in a rodent air‐pouch model. Overall, the established nanoenabled scaffold has the potential to support chondrogenesis as well as modulate inflammatory response, overcoming the limitations of traditional tissue engineering strategies.
Collapse
Affiliation(s)
- Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Marina Couto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Beatriz Ribeiro
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Filipe Albuquerque
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Alexandra Freitas
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Cecília J. Alves
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Geir Klinkenberg
- SINTEF Industry Department of Biotechnology and Nanomedicine Trondheim 7034 Norway
| | | | | | - Andreas M. Seitz
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Luisa de Roy
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | | | - Virpi Muhonen
- Askel Healthcare Ltd Siltasaarenkatu 8‐10 Helsinki 00530 Finland
| | - Bruno Sarmento
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Gandra 4585‐116 Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| |
Collapse
|
4
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
5
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
6
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
7
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
8
|
Ren Y, Chen Y, Chen W, Deng H, Li P, Liu Y, Gao C, Tian G, Ning C, Yuan Z, Sui X, Liu S, Guo Q. Hydrophilic nanofibers with aligned topography modulate macrophage-mediated host responses via the NLRP3 inflammasome. J Nanobiotechnology 2023; 21:269. [PMID: 37574546 PMCID: PMC10424429 DOI: 10.1186/s12951-023-02024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.
Collapse
Affiliation(s)
- Yiming Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Wei Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Haotian Deng
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Peiqi Li
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yubo Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chao Ning
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhiguo Yuan
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
9
|
Vasconcelos DP, Águas AP, Barbosa JN. The inflammasome in biomaterial-driven immunomodulation. J Tissue Eng Regen Med 2022; 16:1109-1120. [PMID: 36327091 PMCID: PMC10092308 DOI: 10.1002/term.3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
11
|
V. Lima B, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Harnessing chitosan and poly-(γ-glutamic acid)-based biomaterials towards cancer immunotherapy. MATERIALS TODAY ADVANCES 2022; 15:100252. [DOI: 10.1016/j.mtadv.2022.100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Dual Role of Chitin as the Double Edged Sword in Controlling the NLRP3 Inflammasome Driven Gastrointestinal and Gynaecological Tumours. Mar Drugs 2022; 20:md20070452. [PMID: 35877745 PMCID: PMC9323176 DOI: 10.3390/md20070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.
Collapse
|
13
|
Chen Y, Li J, Shi J, Ning D, Feng J, Lin W, He F, Xie Z. Ipriflavone suppresses NLRP3 inflammasome activation in host response to biomaterials and promotes early bone healing. J Clin Periodontol 2022; 49:814-827. [PMID: 35569032 DOI: 10.1111/jcpe.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
Abstract
AIM Emerging studies have shown that immune response to biomaterial implants plays a central role in bone healing. Ipriflavone is clinically used for osteoporosis. However, the mechanism of ipriflavone in immune response to implants in early stages of osseointegration remains unclear. In this study, we aimed to investigate the potential role of ipriflavone in early bone healing process and uncover the underlying mechanism. MATERIALS AND METHODS We carried out histological examination as well as analysis of proinflammatory cytokines and NLRP3 inflammasome activation in a tibial implantation mouse model with intra-peritoneal injection of ipriflavone. In addition, we explored the mechanism of ipriflavone in the regulation of NLRP3 inflammasome activation in macrophages. RESULTS In vivo, ipriflavone ameliorated host inflammatory response related to NLRP3 inflammasome activation at implantation sites, characterized by reductions of inflammatory cell infiltration and proinflammatory cytokine interleukin-1β levels. Ipriflavone treatment also showed beneficial effects on early osseointegration. Further investigations of the molecular mechanism showed that the suppression of NLRP3 inflammasome acts upstream of NLRP3 oligomerization through abrogating the production of reactive oxygen species. CONCLUSIONS These results revealed an anti-inflammatory role of ipriflavone in NLRP3 inflammasome activation through improving mitochondrial function. This study provides a new strategy for the development of immune-regulated biomaterials and treatment options for NLRP3-related diseases.
Collapse
Affiliation(s)
- Yun Chen
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianying Feng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Weiwei Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
14
|
Lynch RI, Lavelle EC. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochem Pharmacol 2022; 197:114890. [PMID: 34990595 DOI: 10.1016/j.bcp.2021.114890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Biocompatible and biodegradable biomaterials are used extensively in regenerative medicine and serve as a tool for tissue replacement, as a platform for regeneration of injured tissue, and as a vehicle for delivery of drugs. One of the key factors that must be addressed in developing successful biomaterial-based therapeutics is inflammation. Whilst inflammation is initially essential for wound healing; bringing about clearance of debris and infection, prolonged inflammation can result in delayed wound healing, rejection of the biomaterial, further tissue damage and increased scarring and fibrosis. In this context, the choice of biomaterial must be considered carefully to minimise further induction of inflammation. Here we address the ability of the biomaterials themselves to modulate inflammatory responses and outline how the physico-chemical properties of the materials impact on their pro and anti-inflammatory properties (Fig. 1).
Collapse
Affiliation(s)
- Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland.
| |
Collapse
|
15
|
Wang X, Cao Y, Jing L, Chen S, Leng B, Yang X, Wu Z, Bian J, Banjerdpongchai R, Poofery J, Huang D. Three-Dimensional RAW264.7 Cell Model on Electrohydrodynamic Printed Poly(ε-Caprolactone) Scaffolds for In Vitro Study of Anti-Inflammatory Compounds. ACS APPLIED BIO MATERIALS 2021; 4:7967-7978. [PMID: 35006778 DOI: 10.1021/acsabm.1c00889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation plays an essential role in the human immune system, and anti-inflammatory compounds are important to promote health. However, the in vitro screening of these compounds is largely dependent on flat biology. Herein, we report our efforts in establishing a 3D inflammation murine macrophage model. Murine macrophage RAW 264.7 cells were cultured on poly(ε-caprolactone) (PCL) scaffolds fabricated through an electrohydrodynamic jetting 3D printer and their behavior were examined. Cells on PCL scaffolds showed a 3D shape and morphology with multilayers and a lower proliferation rate. Moreover, macrophages were not activated by scaffold material PCL and 3D microenvironment. The 3D cells showed greater sensitivity to lipopolysaccharide stimulation with higher production activity of nitric oxide (NO), nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). Additionally, the 3D macrophage model showed lower drug sensitivity to commercial anti-inflammatory drugs including aspirin, ibuprofen, and dexamethasone, and natural flavones apigenin and luteolin with higher IC50 for NO production and lower iNOS and COX-2 inhibition efficacy. Overall, the 3D macrophage model showed promise for higher accurate screening of anti-inflammatory compounds. We developed, for the first time, a 3D macrophage model based on a 3D-printed PCL scaffold that provides an extracellular matrix environment for cells to grow in the 3D dimension. 3D-grown RAW 264.7 cells showed different sensitivities and responses to anti-inflammatory compounds from its 2D model. The 3D cells have lower sensitivity to both commercial and natural anti-inflammatory compounds. Consequently, our 3D macrophage model could be applied to screen anti-inflammatory compounds more accurately and thus holds great potential in next-generation drug screening applications.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Bin Leng
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Zhiyuan Wu
- Department of, Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jinsong Bian
- Department of, Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China.,Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Juthathip Poofery
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| |
Collapse
|
16
|
Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int J Biol Macromol 2021; 189:324-334. [PMID: 34419549 DOI: 10.1016/j.ijbiomac.2021.08.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is a polymer derived from the partial deacetylation of chitin with particular characteristics, such as mucoadhesiveness, tolerability, biocompatibility and biodegradability. Biomedical uses of chitosan cover a wide spectrum of applications as dietary fiber, immunoadjuvant and regulator of the intestinal microbiota or delivery agent. Chemical modification of chitosan is feasible because its reactive amino and hydroxyl groups can be modified by a diverse array of ligands, functional groups and molecules. This gives rise to numerous derivatives that allow different formulation types influencing their activity. Considering the multiple events resulting from the interaction with mucosal tissues, chitosan is a singular candidate for strategies targeting immune stimulation (i.e., tolerance induction, vaccination). Its role as a prebiotic and probiotic carrier represents an effective option to manage intestinal dysbiosis. In the intestinal scenario where the exposure of the immune system to a wide variety of antigens is permanent, chitosan increases IgA levels and favors a tolerogenic environment, thus becoming a key ally for host homeostasis.
Collapse
Affiliation(s)
- L Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina
| | - M M Canali
- Université Côte d'Azur, INSERM, CNRS, IPMC, France
| | - C Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900 Villa María, Córdoba, Argentina
| | - S G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina.
| |
Collapse
|
17
|
Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021; 19:md19070359. [PMID: 34201803 PMCID: PMC8303307 DOI: 10.3390/md19070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.
Collapse
|
18
|
Lima BV, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies. Biomater Sci 2021; 9:3209-3227. [PMID: 33949372 DOI: 10.1039/d0bm01984d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.
Collapse
Affiliation(s)
- Beatriz V Lima
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mário A Barbosa
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Flávia Castro
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
20
|
Nadine S, Correia CR, Mano JF. An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. Adv Healthc Mater 2021; 10:e2001993. [PMID: 33506631 DOI: 10.1002/adhm.202001993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Indexed: 12/11/2022]
Abstract
A critical determinant of successful clinical outcomes is the host's response to the biomaterial. Therefore, the prediction of the immunomodulatory bioperformance of biomedical devices following implantation is of utmost importance. Herein, liquefied capsules are proposed as immunomodulatory miniaturized 3D platforms for the high-content combinatorial screening of different polymers that could be used generically in scaffolds. Additionally, the confined and liquefied core of capsules affords a cell-mediated 3D assembly with bioinstructive microplatforms, allowing to study the potential synergistic effect that cells in tissue engineering therapies have on the immunological environment before implantation. As a proof-of-concept, three different polyelectrolytes, ranging in charge density and source, are used. Poly(L-lysine)-, alginate-, and chitosan-ending capsules with or without encapsulated mesenchymal stem/stromal cells (MSCs) are placed on top of a 2D culture of macrophages. Results show that chitosan-ending capsules, as well as the presence of MSCs, favor the balance of macrophage polarization toward a more regenerative profile, through the up-regulation of anti-inflammatory markers, and the release of pro-regenerative cytokines. Overall, the developed system enables the study of the immunomodulatory bioperformance of several polymers in a cost-effective and scalable fashion, while the paracrine signaling between encapsulated cells and the immunological environment can be simultaneously evaluated.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
21
|
Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021; 236:5547-5563. [PMID: 33469931 DOI: 10.1002/jcp.30285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are a group of multiprotein signaling complexes located in the cytoplasm. Several inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, AIM2, and NLRC4. Among them, NLRP3 was investigated in most detail, and it was reported that it can be activated by many different stimuli. Increased NLRP3 protein expression and inflammasome assembly lead to caspase-1 mediated maturation and release of IL-1β, which triggers inflammation and pyroptosis. The activation of the NLRP3 inflammasome has been widely reported in studies of tumors and neurological diseases, but relatively few studies on the cardiovascular system. Ventricular remodeling (VR) is an important factor contributing to heart failure (HF) after myocardial infarction (MI). Consequently, delaying VR is of great significance for improving heart function. Studies have shown that the NLRP3 inflammasome plays an essential role in the process of VR. Here, we reviewed the latest studies on the activation pathway of the NLRP3 inflammasome, focusing on the effects of the NLRP3 inflammasome in primary cells during VR, and finally discuss future research directions in this field.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Shi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
23
|
Torres A, Bidarra S, Vasconcelos D, Barbosa J, Silva E, Nascimento D, Barrias C. Microvascular engineering: Dynamic changes in microgel-entrapped vascular cells correlates with higher vasculogenic/angiogenic potential. Biomaterials 2020; 228:119554. [DOI: 10.1016/j.biomaterials.2019.119554] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
24
|
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019; 9:E470. [PMID: 31509976 PMCID: PMC6770583 DOI: 10.3390/biom9090470] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.
Collapse
Affiliation(s)
- Bolat Sultankulov
- Department of Chemical Engineering, School of Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Berillo
- Water Technology Center (WATEC) Department of Bioscience - Microbiology, Aarhus University, Aarhus 8000, Denmark
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Tursonjan Tokay
- School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|