1
|
Wan H, Yang X, Zhang Y, Liu X, Li Y, Qin Y, Yan H, Gui L, Li K, Zhang L, Yang L, Zhang B, Wang Y. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS NANO 2024; 18:21512-21522. [PMID: 39096486 DOI: 10.1021/acsnano.4c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaohui Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yutong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Longjian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Cong J, Cui C, Huang D, Wang Y, Liu S, Song S, Fan T. The 3-year follow-up of a fully biodegradable implantable device closure for perimembranous ventricular septal defects in children using echocardiography. Front Cardiovasc Med 2024; 11:1420704. [PMID: 39015679 PMCID: PMC11250614 DOI: 10.3389/fcvm.2024.1420704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Objects The aim of this study was to investigate the morphologic changes of a novel fully biodegradable implantable device after closing a perimembranous ventricular septal defect (Pm-VSD) and to evaluate the effect of the occluder on the myocardial function in patients during a 3-year follow-up period. Methods One-year, 2-year, and 3-year follow-ups were carried out after implantation with a total of 30 Pm-VSD patients who had successful closure by the fully biodegradable occluder. In total, 30 healthy children were enrolled as controls. At discharge and at every follow-up visit, the lengths of the left and right discs of the novel device were measured in the apical three- and four-chamber as well as short-axis views. At the end of the follow-up, using three-dimensional speckle-tracking conditions, the values of myocardial deformation, including global longitudinal strain, global circumferential strain, and global area strain, were acquired. Results The fully bioabsorbable double-disc occluder gradually decreased over time and was eventually invisible under echocardiographic scanning during the follow-up (p < 0.05). At the end of the third year, there were no significant differences in the myocardial deformation parameters between the cases implanted with the novel devices and the controls; no significant differences were found between the basal segments of the ventricle septa and that of the left ventricle (LV) free wall among the patients who completed the Pm-VSD closure using the fully biodegradable occluder (p > 0.05). Conclusion The novel fully biodegradable occluder is a safe, effective, and perfect alternative for the treatment of VSD. Echocardiography plays a crucial role in the follow-up of this new type of occluder implantation.
Collapse
Affiliation(s)
- Juan Cong
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Cunying Cui
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Danqing Huang
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Ying Wang
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Sifan Liu
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Shubo Song
- Department of Children’s Heart Center, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| | - Taibing Fan
- Department of Children’s Heart Center, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, Henan Provincial People’s Hospital Heart Center, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chen J, Xie Y, Li Y, Chen X, Fu M, Liu Y, Zhang Z. Assessment of degradability and endothelialization of modified poly L-lactic acid (PLLA) atrial septal defect (ASD) occluders over time in vivo. J Cardiothorac Surg 2023; 18:283. [PMID: 37817186 PMCID: PMC10566106 DOI: 10.1186/s13019-023-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE To evaluate the fiber-degradation and endothelialization of a modified poly L-lactic acid (PLLA) atrial septal defect (ASD) occluder for a long time in vivo. METHODS A total of 57 New Zealand rabbits were selected to establish the vasculature implantation model, which would be used to characterize the mechanical properties and pathological reaction of PLLA filaments (a raw polymer of ASD occluder). In total, 27 Experimental piglets were used to create the ASD model for the catheter implantation of PLLA ASD occluders. Then, X-ray imaging, transthoracic echocardiography, histopathology, and scanning electron microscope (SEM) were performed in the experimental animals at 3, 6, 12, and 24 months after implantation. RESULTS In the rabbit models, the fibrocystic grade was 0 and the inflammatory response was grade 2 at 6 months after vasculature implantation of the PLLA filaments. The mass loss of PLLA filaments increased appreciably with the increasing duration of implantation, but their mechanical strength was decreased without broken. In the porcine models, the cardiac gross anatomy showed that all PLLA ASD occluders were stable in the interatrial septum without any vegetation or thrombus formation. At 24 months, the occluders had been embedded into endogenous host tissue nearly. Pathological observations suggested that the occluders degraded gradually without complications at different periods. SEM showed that the occluders were endothelialized completely and essentially became an integral part of the body over time. CONCLUSION In the animal model, the modified PLLA ASD occluders exhibited good degradability and endothelialization in this long-term follow-up study.
Collapse
Affiliation(s)
- Jun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
- Danzhou People's Hospital, Danzhou, 571700, Hainan, China
| | - Yumei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
| | - Yifan Li
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
| | - Xianmiao Chen
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Mingjuan Fu
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yanfen Liu
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Zhiwei Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
4
|
Song S, Shao Z, Fan T, Li B, Liang W, Dong H, Wu K, Hu M, Han Y, Cui C. Favorable mid-term performance of fully biodegradable implantable device for ventricular septal defect closure. JTCVS Tech 2022; 17:133-137. [PMID: 36820343 PMCID: PMC9938384 DOI: 10.1016/j.xjtc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives To assess the mid-term safety and efficacy of transthoracic perimembranous ventricular septal defect (Pm-VSD) closure using a new biodegradable device. Implantation entailed right subaxillary minithoracotomy under transesophageal echocardiography guidance. Methods Between October 2019 and January 2020, 13 patients (males, 5; mean age, 3.6 ± 2.5 years) with Pm-VSDs underwent transthoracic device closures at Zhengzhou University Central China Fuwai Hospital as described previously. Delivery pathways were established by manipulating a hollow probe from right atrium through tricuspid valve to right ventricle and then through VSDs to left ventricle, whereupon installation took place. Results All occluder implantations were successfully executed. Mean defect size was 4.1 ± 1.0 mm, and mean device waist size was 5.2 ± 1.1 mm. One patient (7.7%) with 1.5-mm residual shunt showed complete closure at discharge. There was 1 instance of postoperative incomplete right bundle branch block, which converted to complete right bundle branch block at month 1. During patient follow-up (mean, 24.6 ± 0.8 months), no device dislocations, new residual shunts, new valvular regurgitation, or detectable atrioventricular block ensued. Conclusions Closure of Pm-VSDs using a novel, fully biodegradable occluder in the manner described has proven safe and effective at mid-term follow-up. Long-term safety and efficacy of this device must be further corroborated in a large patient cohort going forward.
Collapse
Affiliation(s)
- Shubo Song
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zehua Shao
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Taibing Fan
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China,Address for reprints: Taibing Fan, Prof, Department of Children's Heart Center, Zhengzhou University People's Hospital, No. 7 Weiwu Rd, Zhengzhou 450000, China.
| | - Bin Li
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Weijie Liang
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Haoju Dong
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Kaiyuan Wu
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Manman Hu
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Yu Han
- Department of Children's Heart Center, Zhengzhou University People's Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Cunying Cui
- Department of Ultrasound, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
5
|
A fully degradable transcatheter ventricular septal defect occluder: Towards rapid occlusion and post-regeneration absorption. Biomaterials 2022; 291:121909. [DOI: 10.1016/j.biomaterials.2022.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
6
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
7
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
8
|
Turner ME, Bouhout I, Petit CJ, Kalfa D. Transcatheter Closure of Atrial and Ventricular Septal Defects: JACC Focus Seminar. J Am Coll Cardiol 2022; 79:2247-2258. [PMID: 35654496 DOI: 10.1016/j.jacc.2021.08.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The field of congenital interventional cardiology has experienced tremendous growth in recent years. Beginning with the development of early devices for transcatheter closure of septal defects in the 1970s and 1980s, such technologies have evolved to become a mainstay of treatment for many atrial septal defects (ASDs) and ventricular septal defects (VSDs). Percutaneous device closure is now the preferred approach for the majority of secundum ASDs. It is also a viable treatment option for selected VSDs, though limitations still exist. In this review, the authors describe the current state of transcatheter closure of ASDs and VSDs in children and adults, including patient selection, procedural approach, and outcomes. Potential areas for future evolution and innovation are also discussed.
Collapse
Affiliation(s)
- Mariel E Turner
- Division of Pediatric Cardiology, Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Irving Medical Center, New York, New York, USA.
| | - Ismail Bouhout
- Division of Cardiothoracic Surgery, Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher J Petit
- Division of Pediatric Cardiology, Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - David Kalfa
- Division of Cardiothoracic Surgery, Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Pre-clinical Evolution of a Novel Transcatheter Bioabsorbable ASD/PFO Occluder Device. Pediatr Cardiol 2022; 43:986-994. [PMID: 34981140 DOI: 10.1007/s00246-021-02809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
To date, there has been limited investigation of bioabsorbable atrial septal defect (ASD) or patent foramen ovale (PFO) closure devices using clinically relevant large animal models. The purpose of this study is to explore the function and safety of a bioabsorbable ASD occluder (BAO) system for PFO and/or secundum ASD transcatheter closure. Using a sheep model, the intra-atrial septum was evaluated by intracardiac echo (ICE). If a PFO was not present, atrial communication was created via transseptal puncture. Device implantation across the intra-atrial communication was performed with fluoroscopic and ICE guidance. Our 1st generation device consisted of a main structure of thin Poly(L-lactide-co-epsilon-caprolactone) (PLCL) fibers, and an internal Poly glycolic acid (PGA) fabric. Four procedures validated procedure feasibility. Subsequently, device design was modified for improved transcatheter delivery. The 2nd generation device has a two-layered structure and was implanted in six sheep. Results showed procedural success in 9/10 (90%) animals. With deployment, the 1st generation device did not reform into its original disk shape and did not conform nicely along the atrial septum. The 2nd generation device was implanted in six animals, 3 out of 6 survived out to 1 year. At 1 year post implantation, ICE confirmed no residual shunting. By necropsy, biomaterials had partially degraded, and histology of explanted samples revealed significant device endothelialization and biomaterial replacement with a collagen layer. Our results demonstrate that our modified 2nd generation BAO can be deployed via minimally invasive percutaneous transcatheter techniques. The BAO partially degrades over 1 year and is replaced by host native tissues. Future studies are needed prior to clinical trials.
Collapse
|
10
|
Jiang N, Jia B. WITHDRAWN: Progress of biodegradable materials for occlusion devices. Ann Med Surg (Lond) 2022. [DOI: 10.1016/j.amsu.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Shen Y, Zhang W, Xie Y, Li A, Wang X, Chen X, Liu Q, Wang Q, Zhang G, Liu Q, Liu J, Zhang D, Zhang Z, Ding J. Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases. Biomaterials 2021; 279:121208. [PMID: 34749074 DOI: 10.1016/j.biomaterials.2021.121208] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
The dominant source of thromboembolism in heart comes from the left atrial appendage (LAA). An occluder can close LAA and significantly reduce the risk of strokes, particularly for those patients with atrial fibrillation. However, it is technically challenging to fabricate an LAA occluder that is appropriate for percutaneous implantation and can be rapidly endothelialized to accomplish complete closure and avoid severe complication. Hypothesizing that a fast migration rate of endothelial cells on the implant surface would lead to rapid endothelialization, we fabricated an LAA occlusion device for interventional treatment with a well-designed 3D architecture and a nanoscale 2D coating. Through screening of biomaterials surfaces with cellular studies in vitro including cell observations, qPCR, RNA sequencing, and implantation studies in vivo, we revealed that a titanium-nitrogen nanocoating on a NiTi alloy promoted high migration rate of endothelial cells on the surface. The effectiveness of this first nanocoating LAA occluder was validated in animal experiments and a patient case, both of which exhibited successful implantation, fast sealing and long-term safety of the device. The mechanistic insights gained in this study will be useful for the design of medical devices with appropriate surface modification, not necessarily for improved cell adhesion but sometimes for enhanced cell migration.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Yumei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Anning Li
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianmiao Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China.
| | - Zhiwei Zhang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Brida M, Chessa M, Celermajer D, Li W, Geva T, Khairy P, Griselli M, Baumgartner H, Gatzoulis MA. Atrial septal defect in adulthood: a new paradigm for congenital heart disease. Eur Heart J 2021; 43:2660-2671. [PMID: 34535989 DOI: 10.1093/eurheartj/ehab646] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Atrial septal defects (ASDs) represent the most common congenital heart defect diagnosed in adulthood. Although considered a simple defect, challenges in optimal diagnostic and treatment options still exist due to great heterogeneity in terms of anatomy and time-related complications primarily arrhythmias, thromboembolism, right heart failure and, in a subset of patients, pulmonary arterial hypertension (PAH). Atrial septal defects call for tertiary expertise where all options may be considered, namely catheter vs. surgical closure, consideration of pre-closure ablation for patients with atrial tachycardia and suitability for closure or/and targeted therapy for patients with PAH. This review serves to update the clinician on the latest evidence, the nuances of optimal diagnostics, treatment options, and long-term follow-up care for patients with an ASD.
Collapse
Affiliation(s)
- Margarita Brida
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK.,Division of Adult Congenital Heart Disease, Department of Cardiovascular Medicine, University Hospital Centre Zagreb, Kispaticeva ul. 12, Zagreb 10000, Croatia.,Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka 51000, Croatia
| | - Massimo Chessa
- ACHD Unit - Pediatric and Adult Congenital Heart Centre, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, Milan 20097, Italy.,UniSR - Vita Salute San Raffaele University, Via Olgettina, 58, Milan 20132, Italy
| | - David Celermajer
- Heart Research Institute, University of Sydney, Camperdown, NSW 2050, Australia
| | - Wei Li
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.,Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Paul Khairy
- Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Massimo Griselli
- Division of Pediatric Cardiovascular Surgery, Masonic Children's Hospital, University of Minnesota, 2450 Riverside Ave, Minneapolis, MN 55454, USA
| | - Helmut Baumgartner
- Department of Cardiology III: Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 48149, Germany
| | - Michael A Gatzoulis
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton & Harefield Hospitals, National Heart and Lung Institute, Imperial College, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
13
|
Lin C, Liu L, Liu Y, Leng J. 4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12668-12678. [PMID: 33397086 DOI: 10.1021/acsami.0c17192] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The significant mismatch of mechanical properties between the implanted medical device and biological tissue is prone to cause wear and even perforation. In addition, the limited biocompatibility and nondegradability of commercial Nitinol-based occlusion devices can easily lead to other serious complications, such as allergy and corrosion. The present study aims to develop a 4D printed patient-specific absorbable left atrial appendage occluder (LAAO) that can match the deformation of left atrial appendage (LAA) tissue to reduce complications. The desirable bioinspired network is explored by iterative optimization to mimic the stress-strain curve of LAA tissue and LAAOs are designed based on the optimal network. In vitro degradation tests are carried out to evaluate the effects of degradation on mechanical properties. In addition, 48 weeks of long-term subcutaneous implantation of the occluder shows favorable biocompatibility, and the 20-cycle compression test demonstrates outstanding durability of LAAO. Besides, a rapid, complete, and remote-controlled 4D transformation process of LAAO is achieved under the trigger of the magnetic field. The deployment of the LAAO in an isolated swine heart initially exhibits its feasibility for transcatheter LAA occlusion. To the best of our knowledge, this is the first demonstration of the 4D printed LAA occlusion device. It is worth noting that the bioinspired design concept is not only applicable to occlusion devices, but also to many other implantable medical devices, which is conducive to reducing complications, and a broad range of appealing application prospects can be foreseen.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150001, China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150001, China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150001, China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, China
| |
Collapse
|
14
|
Li BN, Tang QD, Tan YL, Yan L, Sun L, Guo WB, Qian MY, Chen A, Luo YJ, Zheng ZX, Zhang ZW, Jia HL, Liu C. Key Regulatory Differentially Expressed Genes in the Blood of Atrial Septal Defect Children Treated With Occlusion Devices. Front Genet 2021; 12:790426. [PMID: 34956331 PMCID: PMC8692776 DOI: 10.3389/fgene.2021.790426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
Atrial septal defects (ASDs) are the most common types of cardiac septal defects in congenital heart defects. In addition to traditional therapy, interventional closure has become the main treatment method. However, the molecular events and mechanisms underlying the repair progress by occlusion device remain unknown. In this study, we aimed to characterize differentially expressed genes (DEGs) in the blood of patients treated with occlusion devices (metal or poly-L-lactic acid devices) using RNA-sequencing, and further validated them by qRT-PCR analysis to finally determine the expression of key mediating genes after closure of ASD treatment. The result showed that total 1,045 genes and 1,523 genes were expressed differently with significance in metal and poly-L-lactic acid devices treatment, respectively. The 115 overlap genes from the different sub-analyses are illustrated. The similarities and differences in gene expression reflect that the body response process involved after interventional therapy for ASDs has both different parts that do not overlap and the same part that crosses. The same portion of body response regulatory genes are key regulatory genes expressed in the blood of patients with ASDs treated with closure devices. The gene ontology enrichment analysis showed that biological processes affected in metal device therapy are immune response with CXCR4 genes and poly-L-lactic acid device treatment, and the key pathways are nuclear-transcribed mRNA catabolic process and proteins targeting endoplasmic reticulum process with ribosomal proteins (such as RPS26). We confirmed that CXCR4, TOB1, and DDIT4 gene expression are significantly downregulated toward the pre-therapy level after the post-treatment in both therapy groups by qRT-PCR. Our study suggests that the potential role of CXCR4, DDIT4, and TOB1 may be key regulatory genes in the process of endothelialization in the repair progress of ASDs, providing molecular insights into this progress for future studies.
Collapse
Affiliation(s)
- Bo-Ning Li
- The Department of Cardiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Quan-Dong Tang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Yan-Lian Tan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Bing Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Department of Cardiology, Zhong Shan Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ming-Yang Qian
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Allen Chen
- Guangzhou Mendel Genomics and Medical Technology Co., Guangzhou, China
| | - Ying-Jun Luo
- Guangzhou Mendel Genomics and Medical Technology Co., Guangzhou, China
| | - Zhou-Xia Zheng
- Guangzhou Mendel Genomics and Medical Technology Co., Guangzhou, China
| | - Zhi-Wei Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhi-Wei Zhang, ; Hong-Ling Jia, ; Cong Liu,
| | - Hong-Ling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Zhi-Wei Zhang, ; Hong-Ling Jia, ; Cong Liu,
| | - Cong Liu
- The Department of Cardiology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Zhi-Wei Zhang, ; Hong-Ling Jia, ; Cong Liu,
| |
Collapse
|
15
|
He C, Zhou Y, Tang SS, Luo LH, Feng K. Completed atrioventricular block induced by atrial septal defect occluder unfolding: A case report. World J Clin Cases 2020; 8:5715-5721. [PMID: 33344565 PMCID: PMC7716307 DOI: 10.12998/wjcc.v8.i22.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An atrial septal defect is a common condition and accounts for 25% of adult congenital heart diseases. Transcatheter occlusion is a widely used technique for the treatment of secondary aperture-type atrial septal defects (ASDs).
CASE SUMMARY A 30-year-old female patient was diagnosed with ASD by transthoracic echocardiography (TTE) 1 year ago. The electrocardiogram showed a heart rate of 88 beats per minute, normal sinus rhythm, and no change in the ST-T wave. After admission, TTE showed an atrial septal defect with a left-to-right shunt, aortic root short-axis section with an ASD diameter of 8 mm, a parasternal four-chamber section with an ASD diameter of 9 mm, and subxiphoid biatrial section with a diameter of 13 mm. Percutaneous occlusion was proposed. The intraoperative TTE scan showed that the atrial septal defect was oval in shape, was located near the root of the aorta, and had a maximum diameter of 13 mm. A 10-F sheath was placed in the right femoral vein, and a 0.035° hard guidewire was used to establish the transport track between the left pulmonary vein and the inferior vena cava. A shape-memory alloy atrial septal occluder with a waist diameter of 20 mm was placed successfully and located correctly. TTE showed that the double disk unfolded well and that the clamping of the atrial septum was smooth. Immediately after the disc was revealed, electrocardiograph monitoring showed that the ST interval of the inferior leads was prolonged, the P waves and QRS waves were separated, a junctional escape rhythm maintained the heart rate, and the blood pressure began to decrease. After removing the occluder, the elevation in the ST segment returned to normal immediately, and the sinus rhythm returned to average approximately 10 min later. After consulting the patient’s family, we finally decided to withdraw from the operation.
CONCLUSION Compression of the small coronary artery, which provides an alternative blood supply to the atrioventricular nodule during the operation, leads to the emergence of a complete atrioventricular block.
Collapse
Affiliation(s)
- Chuan He
- Department of Cardiology, Affiliated Hospital of Chengdu University, Chengdu 610081, Sichuan Province, China
| | - Yang Zhou
- Department of Cardiology, Affiliated Hospital of Chengdu University, Chengdu 610081, Sichuan Province, China
| | - Si-Si Tang
- Department of Cardiology, Affiliated Hospital of Chengdu University, Chengdu 610081, Sichuan Province, China
| | - Li-Hong Luo
- Department of Cardiology, Affiliated Hospital of Chengdu University, Chengdu 610081, Sichuan Province, China
| | - Kun Feng
- Department of Cardiology, Affiliated Hospital of Chengdu University, Chengdu 610081, Sichuan Province, China
| |
Collapse
|
16
|
Kogure T, Qureshi SA. The Future of Paediatric Heart Interventions: Where Will We Be in 2030? Curr Cardiol Rep 2020; 22:158. [PMID: 33037461 PMCID: PMC7546978 DOI: 10.1007/s11886-020-01404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Purpose of Review Cardiac catheterization therapies to treat or palliate infants, children and adults with congenital heart disease have developed rapidly worldwide in both technical innovation and device development in the previous three decades. By reviewing of current status of novel or development of devices and techniques, we will discuss what is likely to happen in paediatric heart intervention in the next decade. Recent Findings Recently, biodegradable stents and devices, transcatheter pulmonary valve implantation for the native right ventricle outflow tract and MRI-guided interventions have been progressing rapidly with good immediate to early results. These are expected to be introduced and spread in the next decade although there are still challenges to overcome. Summary The future of paediatric heart intervention is very promising with rapid development of technological progress.
Collapse
Affiliation(s)
- Tomohito Kogure
- Department of Congenital Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.,Department of Cardiology, Tokyo Women's Medical University, Tokyo, 162-0054, Japan
| | - Shakeel A Qureshi
- Department of Congenital Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
17
|
Alkashkari W, Albugami S, Hijazi ZM. Current practice in atrial septal defect occlusion in children and adults. Expert Rev Cardiovasc Ther 2020; 18:315-329. [PMID: 32441165 DOI: 10.1080/14779072.2020.1767595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Atrial septal defect (ASD) is one of the most common congenital heart diseases (CHD) in children and adults. This group of malformations includes several types of atrial communications allowing shunting of blood between the systemic and the pulmonary circulations. Early diagnosis and treatment carries favorable outcomes. Patients diagnosed during adulthood often present with complications related to longstanding volume overload such as pulmonary artery hypertension (PAH), atrial dysrhythmias, and right (RV) and left (LV) ventricular dysfunction. AREA COVERED This article intended to review all aspects of ASD; anatomy, pathophysiology, clinical presentation, natural history, and indication for treatment. Also, we covered the transcatheter therapy in detail, including the procedural aspect, available devices, and outcomes. EXPERT OPINION There has been a remarkable improvement in the treatment strategy of ASD over the last few decades. Transcatheter closure of ASD is currently accepted as the treatment of choice in most patients with appropriately selected secundum ASDs. This review will focus on the most recent advances in diagnosis and treatment strategy of secundum ASD.
Collapse
Affiliation(s)
- Wail Alkashkari
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affairs , Jeddah, Saudi Arabia.,Department of Postgraduate, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia.,Department of Medical Research, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia
| | - Saad Albugami
- Department of Postgraduate, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Ziyad M Hijazi
- Sidra Heart Center, Sidra Medicine , Doha, Qatar.,Weill Cornell Medicine , New York, NY, USA
| |
Collapse
|