1
|
Luo Y, Hu Z, Ni R, Xu R, Zhao J, Feng P, Zhu T, Chen Y, Yao J, Yao Y, Yang L, Zhang H, Zhu Y. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater Res 2024; 28:0076. [PMID: 39253032 PMCID: PMC11382380 DOI: 10.34133/bmr.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianmin Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315046, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yaoqi Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Latreille PL, Rabanel JM, Le Goas M, Salimi S, Arlt J, Patten SA, Ramassamy C, Hildgen P, Martinez VA, Banquy X. In Situ Characterization of the Protein Corona of Nanoparticles In Vitro and In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203354. [PMID: 35901787 DOI: 10.1002/adma.202203354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
A new theoretical framework that enables the use of differential dynamic microscopy (DDM) in fluorescence imaging mode to quantify in situ protein adsorption onto nanoparticles (NP) while simultaneously monitoring for NP aggregation is proposed. This methodology is used to elucidate the thermodynamic and kinetic properties of the protein corona (PC) in vitro and in vivo. The results show that protein adsorption triggers particle aggregation over a wide concentration range and that the formed aggregate structures can be quantified using the proposed methodology. Protein affinity for polystyrene (PS) NPs is observed to be dependent on particle concentration. For complex protein mixtures, this methodology identifies that the PC composition changes with the dilution of serum proteins, demonstrating a Vroman effect never quantitatively assessed in situ on NPs. Finally, DDM allows monitoring of the evolution of the PC in vivo. This results show that the PC composition evolves significantly over time in zebrafish larvae, confirming the inherently dynamic nature of the PC. The performance of the developed methodology allows to obtain quantitative insights into nano-bio interactions in a vast array of physiologically relevant conditions that will serve to further improve the design of nanomedicine.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Jochen Arlt
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Shunmoogum A Patten
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Charles Ramassamy
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
4
|
Tong J, Zhou H, Zhou J, Chen Y, Shi J, Zhang J, Liang X, Du T. Design and evaluation of chitosan-amino acid thermosensitive hydrogel. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:74-87. [PMID: 37073351 PMCID: PMC10077161 DOI: 10.1007/s42995-021-00116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Chitosan/glycerophosphate thermosensitive hydrogel crosslinked physically was a potential drug delivery carrier; however, long gelation time limits its application. Here, chitosan-amino acid (AA) thermosensitive hydrogels were prepared from chitosan (CS), αβ-glycerophosphate (GP), and l-lysine (Lys) or l-glutamic acid (Glu). The prepared CS-Lys/GP and CS-Glu/GP hydrogel showed good thermosensitivity and could form gels in a short time. The optimal parameters of CS-Lys/GP hydrogel were that the concentration of CS-Lys was 2.5%, the ratio of CS/Lys was 3.5/1.0, the ratio of CS-Lys/GP was 4.5/1.0. The optimal parameters of CS-Glu/GP hydrogel were that the concentration of CS-Glu was 3.0%, the ratio of CS/Glu was 2.0/1.0, and the ratio of CS-Glu/GP was 4.0/1.5. Chitosan-amino acid (CS-AA) thermosensitive hydrogel had a three-dimensional network structure. The addition of model drug tinidazole (TNZ) had no obvious effect on the structure of hydrogel. The results of infrared spectroscopy showed that there were hydrogen bonds between amino acids and chitosan. In vitro release results showed that CS-Lys/GP and CS-Glu/GP thermosensitive hydrogels had sustained release effects. Thus, the chitosan-amino acid thermosensitive hydrogels hold great potential as a sustained release drug delivery system.
Collapse
Affiliation(s)
- Jianan Tong
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Huiyun Zhou
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Jingjing Zhou
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Yawei Chen
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Jing Shi
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
- College of Pharmacy (Engineering Research Center for Medicine), Harbin University of Commerce, Harbin, 150000 China
| | - Jieke Zhang
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xinyu Liang
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| | - Tianyuan Du
- Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, 471023 China
| |
Collapse
|
5
|
Advances in the synthesis and application of self-assembling biomaterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:46-62. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.
Collapse
|
6
|
Li X, Li H, Zhang C, Pich A, Xing L, Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact Mater 2021; 6:3473-3484. [PMID: 33869898 PMCID: PMC8024537 DOI: 10.1016/j.bioactmat.2021.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
For cancer nanomedicine, the main goal is to deliver therapeutic agents effectively to solid tumors. Here, we report the unique design of self-adaptive ultrafast charge-reversible chitosan-polypyrrole nanogels (CH-PPy NGs) for enhanced tumor delivery and augmented chemotherapy. CH was first grafted with PPy to form CH-PPy polymers that were used to form CH-PPy NGs through glutaraldehyde cross-linking via a miniemulsion method. The CH-PPy NGs could be finely treated with an alkaline solution to generate ultrafast charge-reversible CH-PPy-OH-4 NGs (R-NGs) with a negative charge at a physiological pH and a positive charge at a slightly acidic pH. The R-NGs display good cytocompatibility, excellent protein resistance, and high doxorubicin (DOX) loading efficiency. Encouragingly, the prepared R-NGs/DOX have prolonged blood circulation time, enhanced tumor accumulation, penetration and tumor cell uptake due to their self-adaptive charge switching to be positively charged, and responsive drug delivery for augmented chemotherapy of ovarian carcinoma in vivo. Notably, the tumor accumulation of R-NGs/DOX (around 4.7%) is much higher than the average tumor accumulation of other nanocarriers (less than 1%) reported elsewhere. The developed self-adaptive PPy-grafted CH NGs represent one of the advanced designs of nanomedicine that could be used for augmented antitumor therapy with low side effects.
Collapse
Affiliation(s)
- Xin Li
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China.,DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Helin Li
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Changchang Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167, RD Geleen, Netherlands
| | - Lingxi Xing
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| |
Collapse
|
7
|
Kumar P, Horváth D, Tóth Á. Bio-inspired flow-driven chitosan chemical gardens. SOFT MATTER 2020; 16:8325-8329. [PMID: 32902544 DOI: 10.1039/d0sm01397h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Organic chemical gardens of chitosan hydrogel develop upon injecting an acidic chitosan solution into an alkaline solution. Besides complex and budding structures, tubular hydrogel formations develop that exhibit periodic surface patterns. The underlying wrinkling instability is identified by its characteristic wavelength dependence on the diameter of the elastic material formed. The flow-driven conditions allow precise control over the structure that can help the design of soft bio-inspired materials. Our findings can also suggest a new direction in the field of chemobrionics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|