1
|
Yang Y, Shi M, Li G, Shen L, Chen L. Novel discovery of a lymphatic bridge connecting Schlemm's canal to limbal and conjunctival lymphatic pathway. Ocul Surf 2023; 29:272-278. [PMID: 37244593 PMCID: PMC10567112 DOI: 10.1016/j.jtos.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Schlemm's canal (SC) is a critical structure regulating aqueous humor (AH) drainage and intraocular pressure (IOP). It is known that in the conventional outflow pathway, AH flows from SC to episcleral veins. We recently reported a high-resolution three-dimensional (3D) imaging technology for intact eyeballs, SC and ocular surface. Using this advanced technology, we herein report the discovery of a new structure, termed lymphatic bridge, that directly connects SC to the limbal and conjunctival lymphatic pathway. Further investigation on this novel outflow pathway may provide new mechanisms and therapeutic approaches for glaucoma. METHODS As reported previously, intact eyeballs were harvested from Prox-1-GFP (green fluorescent protein) mice and processed by a tissue clearing technique with CLARITY. Samples were immunolabeled with specific antibodies for CD31 (pan-endothelial marker) and LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1) and imaged by light-sheet fluorescent microscopy. The limbal areas were examined to locate connecting channels between SC and limbal and conjunctival lymphatic vessels. Moreover, in vivo anterior chamber dye injection was performed with Texas Red dextran for functional analysis on AH outflow. RESULTS A novel lymphatic bridge structure that expressed both Prox-1 and LYVE-1 was discovered between the SC and limbal lymphatic vessels connected with conjunctival lymphatic pathway. Results from the anterior chamber dye injection also confirmed AH drainage into the conjunctival lymphatic outflow pathway. CONCLUSIONS This study provides the first evidence on the direct connection between SC and conjunctival lymphatic pathway. This new pathway is distinctive from the traditional episcleral vein pathway and merits further investigation.
Collapse
Affiliation(s)
- Yujia Yang
- Vision Science Graduate Program, University of California, Berkeley, USA; Center for Eye Disease and Development, Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, USA
| | - Meng Shi
- Vision Science Graduate Program, University of California, Berkeley, USA; Center for Eye Disease and Development, Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, USA
| | - Guangyu Li
- Vision Science Graduate Program, University of California, Berkeley, USA; Center for Eye Disease and Development, Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, USA
| | - Lejun Shen
- Vision Science Graduate Program, University of California, Berkeley, USA; Center for Eye Disease and Development, Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, USA
| | - Lu Chen
- Vision Science Graduate Program, University of California, Berkeley, USA; Center for Eye Disease and Development, Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, USA; Francis I. Proctor Foundation for Research in Ophthalmology, University of California San Francisco, USA.
| |
Collapse
|
2
|
Beardslee LA, Halman JR, Unser AM, Xie Y, Danias J, Bergkvist M, Sharfstein ST, Torrejon KY. Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:679. [PMID: 37370610 PMCID: PMC10294786 DOI: 10.3390/bioengineering10060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Justin R. Halman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Andrea M. Unser
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T. Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Y. Torrejon
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
- Glauconix Biosciences Inc., 251 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
3
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
5
|
Bikuna‐Izagirre M, Aldazabal J, Extramiana L, Moreno‐Montañés J, Carnero E, Paredes J. Technological advances in ocular trabecular meshwork in vitro models for glaucoma research. Biotechnol Bioeng 2022; 119:2698-2714. [PMID: 35836364 PMCID: PMC9543213 DOI: 10.1002/bit.28182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide and is characterized by the progressive degeneration of the optic nerve. Intraocular pressure (IOP), which is considered to be the main risk factor for glaucoma development, builds up in response to the resistance (resistance to what?) provided by the trabecular meshwork (TM) to aqueous humor (AH) outflow. Although the TM and its relationship to AH outflow have remained at the forefront of scientific interest, researchers remain uncertain regarding which mechanisms drive the deterioration of the TM. Current tissue-engineering fabrication techniques have come up with promising approaches to successfully recreate the TM. Nonetheless, more accurate models are needed to understand the factors that make glaucoma arise. In this review, we provide a chronological evaluation of the technological milestones that have taken place in the field of glaucoma research, and we conduct a comprehensive comparison of available TM fabrication technologies. Additionally, we also discuss AH perfusion platforms, since they are essential for the validation of these scaffolds, as well as pressure-outflow relationship studies and the discovery of new IOP-reduction therapies.
Collapse
Affiliation(s)
- Maria Bikuna‐Izagirre
- Tecnun School of EngineeringUniversity of NavarraSan SebastiánSpain
- Biomedical Engineering CenterUniversity of NavarraPamplonaSpain
| | - Javier Aldazabal
- Tecnun School of EngineeringUniversity of NavarraSan SebastiánSpain
- Biomedical Engineering CenterUniversity of NavarraPamplonaSpain
| | - Leire Extramiana
- Departamento de oftalmología ClínicaClínica Universidad de NavarraPamplonaEspaña
| | | | - Elena Carnero
- Departamento de oftalmología ClínicaClínica Universidad de NavarraPamplonaEspaña
| | - Jacobo Paredes
- Tecnun School of EngineeringUniversity of NavarraSan SebastiánSpain
- Biomedical Engineering CenterUniversity of NavarraPamplonaSpain
| |
Collapse
|
6
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|
7
|
Tian YI, Zhang X, Torrejon K, Danias J, Du Y, Xie Y. A Biomimetic, Stem Cell-Derived In Vitro Ocular Outflow Model. ADVANCED BIOSYSTEMS 2020; 4:e2000004. [PMID: 32734694 PMCID: PMC7484422 DOI: 10.1002/adbi.202000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/07/2020] [Indexed: 12/24/2022]
Abstract
Age-related human trabecular meshwork (HTM) cell loss is suggested to affect its ability to regulate aqueous humor outflow in the eye. In addition, disease-related HTM cell loss is suggested to lead to elevated intraocular pressure in glaucoma. Induced pluripotent stem cell (iPSC)-derived trabecular meshwork (TM) cells are promising autologous cell sources that can be used to restore the declining TM cell population and function. Previously, an in vitro HTM model is bioengineered for understanding HTM cell biology and screening of pharmacological or biological agents that affect trabecular outflow facility. In this study, it is demonstrated that human iPSC-derived TM cells cultured on SU-8 scaffolds exhibit HTM-like cell morphology, extracellular matrix deposition, and drug responsiveness to dexamethasone treatment. These findings suggest that iPSC-derived TM cells behave like primary HTM cells and can thus serve as reproducible and scalable cell sources when using this in vitro system for glaucoma drug screening and further understanding of outflow pathway physiology, leading to personalized medicine.
Collapse
Affiliation(s)
- Yangzi Isabel Tian
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Torrejon
- Glauconix Biosciences, Inc., 251 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Yiqin Du
- University of Pittsburg School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
8
|
Lu R, Soden PA, Lee E. Tissue-Engineered Models for Glaucoma Research. MICROMACHINES 2020; 11:mi11060612. [PMID: 32599818 PMCID: PMC7345325 DOI: 10.3390/mi11060612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs). Patients with glaucoma generally experience elevations in intraocular pressure (IOP), followed by RGC death, peripheral vision loss and eventually blindness. However, despite the substantial economic and health-related impact of glaucoma-related morbidity worldwide, the surgical and pharmacological management of glaucoma is still limited to maintaining IOP within a normal range. This is in large part because the underlying molecular and biophysical mechanisms by which glaucomatous changes occur are still unclear. In the present review article, we describe current tissue-engineered models of the intraocular space that aim to advance the state of glaucoma research. Specifically, we critically evaluate and compare both 2D and 3D-culture models of the trabecular meshwork and nerve fiber layer, both of which are key players in glaucoma pathophysiology. Finally, we point out the need for novel organ-on-a-chip models of glaucoma that functionally integrate currently available 3D models of the retina and the trabecular outflow pathway.
Collapse
Affiliation(s)
- Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Paul A. Soden
- College of Human Ecology, Cornell University, Ithaca, NY 14853, USA;
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-8491
| |
Collapse
|