1
|
Liu A, Qin Y, Dai J, Song F, Tian Y, Zheng Y, Wen P. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Bioact Mater 2024; 41:312-335. [PMID: 39161793 PMCID: PMC11331728 DOI: 10.1016/j.bioactmat.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
4
|
Yuan K, Deng C, Tan L, Wang X, Yan W, Dai X, Du R, Zheng Y, Zhang H, Wang G. Structural and temporal dynamics analysis of zinc-based biomaterials: History, research hotspots and emerging trends. Bioact Mater 2024; 35:306-329. [PMID: 38362138 PMCID: PMC10867564 DOI: 10.1016/j.bioactmat.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.
Collapse
Affiliation(s)
- Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
5
|
Cao X, Wang X, Chen J, Geng X, Tian H. 3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety. J Funct Biomater 2024; 15:109. [PMID: 38667566 PMCID: PMC11051303 DOI: 10.3390/jfb15040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants.
Collapse
Affiliation(s)
- Xiangyu Cao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Xinguang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Jiazheng Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Xiao Geng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| |
Collapse
|
6
|
Putra NE, Moosabeiki V, Leeflang MA, Zhou J, Zadpoor AA. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds. Acta Biomater 2024; 178:340-351. [PMID: 38395100 DOI: 10.1016/j.actbio.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue behavior of an extrusion-based AM porous Fe35Mn alloy under cyclic loading in air and in the revised simulated body fluid (r-SBF), including the fatigue crack morphology and distribution in the porous structure. We hypothesized that the fatigue behavior of the architected AM Fe35Mn alloy would be strongly affected by the simultaneous biodegradation process. We defined the endurance limit as the maximum stress at which the scaffolds could undergo 3 million loading cycles without failure. The endurance limit of the scaffolds was determined to be 90 % of their yield strength in air, but only 60 % in r-SBF. No notable crack formation in the specimens tested in air was observed even after loading up to 90 % of their yield strength. As for the specimens tested in r-SBF, however, cracks formed in the specimens subjected to loads exceeding 60 % of their yield strength appeared to initiate on the periphery and propagate toward the internal struts. Altogether, the results show that the extrusion-based AM porous Fe35Mn alloy is capable of tolerating up to 60 % of its yield strength for up to 3 million cycles, which corresponds to 1.5 years of use of load-bearing implants subjected to repetitive gait cycles. The fatigue performance of the alloy thus further enhances its potential for trabecular bone substitution subjected to cyclic compressive loading. STATEMENT OF SIGNIFICANCE: Fatigue behavior of extrusion-based AM porous Fe35Mn alloy scaffolds in air and revised simulated body fluid was studied. The Fe35Mn alloy scaffolds endured 90 % of their yield strength for up to 3 × 106 loading cycles in air. Moreover, the scaffolds tolerated 3 × 106 loading cycles at 60 % of their yield strength in revised simulated body fluid. The Fe35Mn alloy scaffolds exhibited a capacity of withstanding 1.5-year physiological loading when used as bone implants.
Collapse
Affiliation(s)
- Niko E Putra
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands.
| | - Vahid Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Marius A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| |
Collapse
|
7
|
Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang L, Jiang D, Huang H, Wang J. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater 2024; 32:400-414. [PMID: 37885916 PMCID: PMC10598503 DOI: 10.1016/j.bioactmat.2023.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases. As the self-healing capacity of hyaline cartilage is limited, timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy. In this study, we devised a biodegradable bilayered scaffold, comprising chondroitin sulfate (CS) hydrogel to regenerate chondral tissue and a porous pure zinc (Zn) scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer. The photocured CS hydrogel possessed a compressive strength of 82 kPa, while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa. Such mechanical properties are similar to values reported for cancellous bone. In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells. Upon implantation, the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model, resulting in (i) a smoother cartilage surface, (ii) more hyaline-like cartilage, and (iii) a superior integration into the adjacent host tissue. Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Holger Jahr
- Institute of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen, 52074, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062, Aachen, Germany
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Qi J, Zhang H, Chen S, Du T, Zhang Y, Qiao A. Numerical Simulation of Dynamic Degradation and Fatigue Damage of Degradable Zinc Alloy Stents. J Funct Biomater 2023; 14:547. [PMID: 37998116 PMCID: PMC10672128 DOI: 10.3390/jfb14110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Current research on the fatigue properties of degradable zinc alloy stents has not yet considered the issue of the fatigue life changing with material properties during the dynamic degradation process. Therefore, in this paper, we established a fatigue damage algorithm to study the fatigue problem affected by the changing of material properties during the dynamic degradation process of the stent under the action of pulsating cyclic loading. Three models: the dynamic degradation model, the dynamic degradation model under pulsating cyclic loading, and the coupled model of fatigue damage and dynamic degradation, were developed to verify the effect of fatigue damage on stent life. The results show that fatigue damage leads to a deeper degree of inhomogeneous degradation of the stent, which affects the service life of the stent. Fatigue damage is a factor that cannot be ignored. Therefore, when studying the mechanical properties and lifetime of degradable stents, incorporating fatigue damage into the study can help more accurately assess the lifetime of the stents.
Collapse
Affiliation(s)
| | | | | | | | | | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Li G, Chen D, Mine Y, Takashima K, Zheng Y. Fatigue behavior of biodegradable Zn-Li binary alloys in air and simulated body fluid with pure Zn as control. Acta Biomater 2023; 168:637-649. [PMID: 37517618 DOI: 10.1016/j.actbio.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Zn-Li-based alloys have drawn great attention as promising candidates for load-bearing sites, such as intramedullary nails and bone plates. They possess high monotonic strength (over 500MPa) and better pitting resistance with lithium-rich layers acting as barriers for corrosion attack under (quasi-)static conditions. However, their response to dynamic loadings such as fatigue is still unknown. Herein, the corrosion fatigue behavior of a series of Zn-Li binary alloys with different lithium addition amounts was tested in simulated body fluid. Tensile and fatigue strength of the materials were proportional to lithium content while corrosion fatigue strength was not. Extremely long cracks that extended parallel to the loading direction were found in Zn-1.0wt.%Li alloys. These cracks propagated by selective dissolution of the lithium-rich phase in the eutectoid regions and drastically reduced the corrosion fatigue strength of Zn-1.0wt.%Li alloy owing to exacerbated crack propagation. To sum up, Zn-Li binary alloys showed fatigue strength comparable to pure iron and pure titanium, which confirmed their loading capacity under dynamic conditions. STATEMENT OF SIGNIFICANCE: Zn-Li-based alloys are qualified as biodegradable metals and are dedicated to load-bearing applications. Current research has shown that lithium can suppress pitting corrosion by the formation of lithium-rich layers on the alloy surface during (quasi-)static conditions. However, how these materials respond to dynamic loading is still unknown. The present study investigated the influence of lithium amount (0.1∼1.0wt.%) on the corrosion fatigue behavior of binary Zn-Li alloys. The results showed that lithium effectively improved the mechanical strength but can harm corrosion fatigue strength at high content due to selective dissolution of lithium-rich phase. This demonstrated that the amount of lithium should be controlled for optimal properties. Zn-0.8wt.%Li alloy demonstrated a good combination of tensile and corrosion fatigue strength, which can be further improved by proper alloying and thermomechanical treatment.
Collapse
Affiliation(s)
- Guannan Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing 100035, China.
| | - Yoji Mine
- Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazuki Takashima
- Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
11
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
12
|
Wang Z, Liu B, Yin B, Zheng Y, Tian Y, Wen P. Comprehensive review of additively manufactured biodegradable magnesium implants for repairing bone defects from biomechanical and biodegradable perspectives. Front Chem 2022; 10:1066103. [PMID: 36523749 PMCID: PMC9745192 DOI: 10.3389/fchem.2022.1066103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 10/21/2023] Open
Abstract
Bone defect repair is a complicated clinical problem, particularly when the defect is relatively large and the bone is unable to repair itself. Magnesium and its alloys have been introduced as versatile biomaterials to repair bone defects because of their excellent biocompatibility, osteoconductivity, bone-mimicking biomechanical features, and non-toxic and biodegradable properties. Therefore, magnesium alloys have become a popular research topic in the field of implants to treat critical bone defects. This review explores the popular Mg alloy research topics in the field of bone defects. Bibliometric analyses demonstrate that the degradation control and mechanical properties of Mg alloys are the main research focus for the treatment of bone defects. Furthermore, the additive manufacturing (AM) of Mg alloys is a promising approach for treating bone defects using implants with customized structures and functions. This work reviews the state of research on AM-Mg alloys and the current challenges in the field, mainly from the two aspects of controlling the degradation rate and the fabrication of excellent mechanical properties. First, the advantages, current progress, and challenges of the AM of Mg alloys for further application are discussed. The main mechanisms that lead to the rapid degradation of AM-Mg are then highlighted. Next, the typical methods and processing parameters of laser powder bed fusion fabrication on the degradation characteristics of Mg alloys are reviewed. The following section discusses how the above factors affect the mechanical properties of AM-Mg and the recent research progress. Finally, the current status of research on AM-Mg for bone defects is summarized, and some research directions for AM-Mg to drive the application of clinical orthopedic implants are suggested.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bangzhao Yin
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Soni R, Jhavar S, Tyeb S, Gupta SK, Suwas S, Chatterjee K. Wire Arc Additive Manufacturing of Zinc as a Degradable Metallic Biomaterial. J Funct Biomater 2022; 13:jfb13040212. [PMID: 36412853 PMCID: PMC9680225 DOI: 10.3390/jfb13040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Wire arc additive manufacturing (WAAM) offers a high rate of material deposition among various additive manufacturing techniques with wire as feedstock material but has not been established for zinc alloys. Zn alloys can be used as degradable biomaterials, in contrast to conventional permanent metallic biomaterials. In this work, commercially pure Zn was processed by WAAM to obtain near-dense parts, and the properties obtained through WAAM-processed Zn were compared with wrought (WR) Zn samples. The microstructure and hardness values of the WAAM (41 ± 1 HV0.3) components were found to be similar to those of the WR (35 ± 2 HV0.3) components. Bulk X-ray diffraction texture measurements suggested that WAAM builds exhibit a heavily textured microstructure compared to the WR counterparts, with peak intensities around <3 3−6 2> or <0 0 0 2> in the directions parallel to the build direction (BD). The corrosion rates in simulated body fluid (SBF) were similar for WAAM (0.45 mmpy) and WR (0.3 mmpy) samples. The weight loss measurements in SBF were found to be marginally higher in the WAAM samples compared to the WR counterparts for a duration of up to 21 days. MC3T3-E1 preosteoblasts were found to be healthy and proliferating in the culture medium containing the degradation products from WAAM-Zn in a manner similar to WR-Zn. This work establishes the feasibility of processing Zn by WAAM for use in bioresorbable metallic implants.
Collapse
Affiliation(s)
- Rishabh Soni
- Department of Materials Engineering, Indian Institute of Science, Sir C. V. Raman Avenue, Bangalore 560012, India
| | - Suyog Jhavar
- School of Mechanical Engineering, VIT-AP University, Inavolu, Beside AP Secretariat Amaravati, Amaravati 522237, India
| | - Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science, Sir C. V. Raman Avenue, Bangalore 560012, India
| | - Saurabh Kumar Gupta
- Department of Materials Engineering, Indian Institute of Science, Sir C. V. Raman Avenue, Bangalore 560012, India
| | - Satyam Suwas
- Department of Materials Engineering, Indian Institute of Science, Sir C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Sir C. V. Raman Avenue, Bangalore 560012, India
- Correspondence: ; Tel.: +91-80-22933408
| |
Collapse
|
14
|
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
Abstract
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. In the past few decades, several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications. Meanwhile, the capabilities of AM to fabricate a wide range of biomaterials, including metals and their alloys, polymers, and ceramics, have been exploited, offering unprecedented benefits to medical professionals and patients alike. In this review article, we provide an overview of the design principles that have been developed and used for the AM of biomaterials as well as those dealing with three major categories of biomaterials, i.e., metals (and their alloys), polymers, and ceramics. The design strategies can be categorised as: library-based design, topology optimisation, bio-inspired design, and meta-biomaterials. Recent developments related to the biomedical applications and fabrication methods of AM aimed at enhancing the quality of final 3D-printed biomaterials and improving their physical, mechanical, and biological characteristics are also highlighted. Finally, examples of 3D-printed biomaterials with tuned properties and functionalities are presented.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Mardina Z, Venezuela J, Maher C, Shi Z, Dargusch M, Atrens A. Design, mechanical and degradation requirements of biodegradable metal mesh for pelvic floor reconstruction. Biomater Sci 2022; 10:3371-3392. [DOI: 10.1039/d2bm00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pelvic organ prolapse (POP) is the herniation of surrounding tissue and organs into the vagina and or rectum, and is a result of weakening of pelvic floor muscles, connective tissue,...
Collapse
|
16
|
Wang Y, Huang H, Jia G, Zeng H, Yuan G. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds. Acta Biomater 2021; 135:705-722. [PMID: 34469790 DOI: 10.1016/j.actbio.2021.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Additive manufacturing (AM) has enabled the fabrication of biodegradable porous metals to satisfy the desired characteristics for orthopedic applications. The geometrical design on AM biodegradable metallic scaffolds has been found to offer a favorable opportunity to regulate their mechanical and degradation performance in previous studies, however mostly confined to static responses. In this study, we presented the effect of the geometrical design on the dynamic responses of AM Mg scaffolds for the first time. Three different types of porous structures, based on various unit cells (i.e., biomimetic, diamond, and sheet-based gyroid), were established and then subjected to selective laser melting (SLM) process using group-developed Mg-Nd-Zn-Zr alloy (JDBM) powders. The topology after dynamic electropolishing, dynamic compressive properties, and dynamic biodegradation behavior of the AM Mg scaffolds were comprehensively evaluated. It was found that dynamic electropolishing effectively removed the excessive adhered powders on the surfaces and resulted in similar geometrical deviations amongst the AM Mg scaffolds, independent of their porous structures. The geometrical design significantly affected the compressive fatigue properties of the AM Mg scaffolds, of which the sheeted-based gyroid structure demonstrated a superior fatigue endurance limit of 0.85 at 106 cycles. Furthermore, in vitro dynamic immersion behaviors of the AM Mg scaffolds revealed a decent dependence on local architectures, where the sheeted-based gyroid scaffold experienced the lowest structural loss with a relatively uniform degradation mode. The obtained results indicate that the geometrical design could provide a promising strategy to develop desirable bone substitutes for the treatment of critical-size load-bearing defects. STATEMENT OF SIGNIFICANCE: Additive manufacturing (AM) has provided unprecedented opportunities to fabricate geometrically complex biodegradable scaffolds where the topological design becomes a key determinant on comprehensive performance. In this paper, we fabricate 3 AM biodegradable Mg scaffolds (i.e., biomimetic, diamond, and sheet-based gyroid) and report the effect of the geometrical design on the dynamic responses of AM Mg scaffolds for the first time. The results revealed that the sheeted-based gyroid scaffold exhibited the best combination of superior compressive fatigue properties and relatively uniform dynamic biodegradation mode, suggesting that the regulation of the porous structures could be an effective approach for the optimization of AM Mg scaffolds as to satisfy clinical requirements in orthopedic applications.
Collapse
Affiliation(s)
- Yinchuan Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaozhi Jia
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater 2021; 6:4607-4624. [PMID: 34095620 PMCID: PMC8141820 DOI: 10.1016/j.bioactmat.2021.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
There is no targeted effective treatment for patients undergoing internal fixation surgery/two-stage total joint revision surgery with a high risk of postoperative infection and osteolysis, while the rate of reoperation due to infection and osteolysis remains high. In this study, we report a pioneering application of implants made of biodegradable Zn–Ag alloy with active antibacterial and anti-osteolytic properties in three classical animal models, illustrating antibacterial, anti-osteolysis, and internal fixation for fractures. The antibacterial activity of the Zn–2Ag alloy was verified in a rat femur osteomyelitis prevention model, while the anti-osteolytic properties were evaluated using a mouse cranial osteolysis model. Moreover, the Zn–2Ag based screws showed similar performance in bone fracture fixation compared to the Ti–6Al–4V counterpart. The fracture healed completely after 3 months in the rabbit femoral condyle fracture model. Furthermore, the underlying antibacterial mechanism may include inhibition of biofilm formation, autolysis-related pathways, and antibiotic resistance pathways. Osseointegration mechanisms may include inhibition of osteoclast-associated protein expression, no effect on osteogenic protein expression, and no activation of related inflammatory protein expression. The empirical findings here reveal the great potential of Zn–Ag-based alloys for degradable biomaterials in internal fixation surgery/two-stage total joint revision surgery for patients with a high risk of postoperative infection and osteolysis. Zn–2Ag alloy is designed for orthopedic applications. Zn–2Ag alloy exhibit outstanding antibacterial properties in a rat femur osteomyelitis prevention model. Zn–2Ag alloy exhibit outstanding anti-osteolytic properties in a mouse cranial osteolysis model. Zn-2Ag based screws showed reliable performance in bone fracture fixation in the rabbit femoral condyle fracture model.
Collapse
|
18
|
Raihan MM, Otsuka Y, Tsuchida K, Manonukul A, Ohnuma K, Miyashita Y. Damage evaluation of HAp-coated porous titanium foam in simulated body fluid based on compression fatigue behavior. J Mech Behav Biomed Mater 2021; 117:104383. [PMID: 33596530 DOI: 10.1016/j.jmbbm.2021.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023]
Abstract
Although pure Ti is nontoxic, alloying elements may be released into the surrounding tissue when Ti alloys are used, and this can cause cytotoxicity. Therefore, this study performed the damage evaluation of hydroxyapatite (HAp)-coated porous Ti components subjected to cyclic compression in a simulated body fluid (SBF). The HAp coating layer was deposited on the surface of porous Ti by electrophoresis, and a dense and homogeneous coating morphology was observed on the surface of the porous Ti. To specify damage types of HAp coating in situ, acoustic emission (AE) measurements and microscopic observations were simultaneously conducted during compressive fatigue loading tests to detect the specific failure mode. Compression tests revealed that the interfacial strength between the HAp coating and porous Ti was higher than the yield strength of the porous body (7-9 MPa). The AE signals were detected only in the plastic deformation stage of porous Ti, which indicated that they were generated because of plastic deformation/fractures in the porous body. Compressive fatigue tests revealed that no significant HAp coating damage occurred when the applied maximum stress was within the elastic limit of porous Ti in air. In contrast, the HAp coating exhibited delamination at the initial stage of cyclic loading at all stress levels in SBF, while the fatigue limit of the coated porous substrate, 2 MPa, was not affected by the SBF medium. Though the delamination of the HAp coating in SBF occurred during the early stages of fatigue loading, the amorphous calcium phosphate layer was recovered partly through re-precipitation from SBF. The AE signals from the delamination of the HAp coating or fracture in porous Ti could be identified using the peak voltage and frequencies. As microscopic observations were limited to certain parts of the porous body, AE signals were clustered according to the types of failure. The clustered AE signals were successfully correlated with the fatigue behavior of porous Ti. Corrosion fatigue was determined to be the primary mechanism for the delamination of the HAp coating on porous Ti in SBF.
Collapse
Affiliation(s)
- Munshi Mohammad Raihan
- Graduate School of Information and Control Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata, 940-2188, Japan
| | - Yuichi Otsuka
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata, 940-2188, Japan.
| | - Koudai Tsuchida
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata, 940-2188, Japan
| | - Anchalee Manonukul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Thailand
| | - Kiyoshi Ohnuma
- Department of Bio-engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata, 940-2188, Japan
| | - Yukio Miyashita
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata, 940-2188, Japan
| |
Collapse
|
19
|
He J, Fang J, Wei P, Li Y, Guo H, Mei Q, Ren F. Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater 2021; 121:665-681. [PMID: 33242640 DOI: 10.1016/j.actbio.2020.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
Three-dimensional (3D) porous zinc (Zn) with a moderate degradation rate is a promising candidate for biodegradable bone scaffolds. However, fabrication of such scaffolds with adequate mechanical properties remains a challenge. Moreover, the composition, crystallography and microstructure of the in vivo degradation products formed at or near the implant-bone interface are still not precisely known. Here, we have fabricated porous Fe@Zn scaffolds with skeletons consisting of an inner core layer of Fe and an outer shell layer of Zn using template-assisted electrodeposition technique, and systematically evaluated their porous structure, mechanical properties, degradation mechanism, antibacterial ability and in vitro and in vivo biocompatibility. In situ site-specific focused ion beam micromilling and transmission electron microscopy were used to identify the in vivo degradation products at the nanometer scale. The 3D porous Fe@Zn scaffolds show similar structure and comparable mechanical properties to human cancellous bone. The degradation rates can be adjusted by varying the layer thickness of Zn and Fe. The antibacterial rates reach over 95% against S. aureus and almost 100% against E. coli. A threshold of released Zn ion concentration (~ 0.3 mM) was found to determine the in vitro biocompatibility. Intense new bone formation and ingrowth were observed despite with a slight inflammatory response. The in vivo degradation products were identified to be equiaxed nanocrystalline zinc oxide with dispersed zinc carbonate. This study not only demonstrates the feasibility of porous Fe@Zn for biodegradable bone implants, but also provides significant insight into the degradation mechanism of porous Zn in physiological environment.
Collapse
Affiliation(s)
- Jin He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pengbo Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yulei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hui Guo
- Centre of experimental animal, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qingsong Mei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
20
|
Abstract
Significant progress was achieved presently in the development of metallic foam-like materials improved by biocompatible coatings. Material properties of the iron, magnesium, zinc, and their alloys are promising for their uses in medical applications, especially for orthopedic and bone tissue purposes. Current processing technologies and a variety of modifications of the surface and composition facilitate the design of adjusted medical devices with desirable mechanical, morphological, and functional properties. This article reviews the recent progress in the design of advanced degradable metallic biomaterials perfected by different coatings: polymer, inorganic ceramic, and metallic. Appropriate coating of metallic foams could improve the biocompatibility, osteogenesis, and bone tissue-bonding properties. In this paper, a comprehensive review of different coating types used for the enhancement of one or several properties of biodegradable porous implants is given. An outline of the conventional preparation methods of metallic foams and a brief overview of different alloys for medical applications are also provided. In addition, current challenges and future research directions of processing and surface modifications of biodegradable metallic foams for medical applications are suggested.
Collapse
|