1
|
Bai Z, Wang X, Liang T, Xu G, Cai J, Xu W, Yang K, Hu L, Pei P. Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives. Adv Healthc Mater 2024; 13:e2401615. [PMID: 38935934 DOI: 10.1002/adhm.202401615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Tumor vaccines stand at the vanguard of tumor immunotherapy, demonstrating significant potential and promise in recent years. While tumor vaccines have achieved breakthroughs in the treatment of cancer, they still encounter numerous challenges, including improving the immunogenicity of vaccines and expanding the scope of vaccine application. As natural immune activators, bacterial components offer inherent advantages in tumor vaccines. Bacterial membrane components, with their safer profile, easy extraction, purification, and engineering, along with their diverse array of immune components, activate the immune system and improve tumor vaccine efficacy. This review systematically summarizes the mechanism of action and therapeutic effects of bacterial membranes and its derivatives (including bacterial membrane vesicles and hybrid membrane biomaterials) in tumor vaccines. Subsequently, the authors delve into the preparation and advantages of tumor vaccines based on bacterial membranes and hybrid membrane biomaterials. Following this, the immune effects of tumor vaccines based on bacterial outer membrane vesicles are elucidated, and their mechanisms are explained. Moreover, their advantages in tumor combination therapy are analyzed. Last, the challenges and trends in this field are discussed. This comprehensive analysis aims to offer a more informed reference and scientific foundation for the design and implementation of bacterial membrane-based tumor vaccines.
Collapse
Affiliation(s)
- Zhenxin Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanyu Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Tianming Liang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Guangyu Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinzhou Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
2
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
3
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Meng Y, Kong C, Ma Y, Sun J, Zhang G. Bacterial outer membrane vesicles in the fight against cancer. Chin Med J (Engl) 2024:00029330-990000000-01174. [PMID: 39118214 PMCID: PMC11407815 DOI: 10.1097/cm9.0000000000003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Bacterial outer membrane vesicles (OMVs) are diminutive vesicles naturally released by Gram-negative bacteria. These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment. Therapeutic medicines may be delivered via OMVs directly to the tumor sites, thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity. Furthermore, the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells, which makes them a desirable tool for immunotherapy. They can also be genetically modified to carry specific antigens, immunomodulatory compounds, and small interfering RNAs, enhancing the immune response to cancerous cells and silencing genes associated with disease progression. Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects. This review highlights the crucial role of bacterial OMVs in cancer, emphasizing their potential as vectors for novel cancer targeted therapies. As researchers delve deeper into the complexities of these vesicles and their interactions with tumors, there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Cuicui Kong
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yushu Ma
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
5
|
Jiang Y, Ma J, Long Y, Dan Y, Fang L, Wang Z. Extracellular Membrane Vesicles of Escherichia coli Induce Apoptosis of CT26 Colon Carcinoma Cells. Microorganisms 2024; 12:1446. [PMID: 39065214 PMCID: PMC11279139 DOI: 10.3390/microorganisms12071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli (E. coli) is commonly utilized as a vehicle for anti-tumor therapy due to its unique tumor-targeting capabilities and ease of engineering modification. To further explore the role of E. coli in tumor treatment, we consider that E. coli outer membrane vesicles (E. coli-OMVs) play a crucial role in the therapeutic process. Firstly, E. coli-OMVs were isolated and partially purified by filtration and ultracentrifugation, and were characterized using techniques such as nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western Blot (WB). The obtained extracellular nanoparticles, containing OMVs, were found to inhibited the growth of CT26 tumor in mice, while the expression of Bax protein was increased and the expression of Bcl-2 protein decreased. In vitro experiments showed that E. coli-OMVs entered CT26 cells and inhibited cell proliferation, invasion and migration. In addition, in the presence of E. coli-OMVs, we observed an increase in apoptosis rate and a decrease in the ratio of Bcl-2/Bax. These data indicate that E. coli-OMVs inhibits the growth of CT26 colon cancer by inducing apoptosis of CT26 cells. These findings propose E. coli-OMVs as a promising therapeutic drug for colorectal cancer (CRC), providing robust support for further research in related fields.
Collapse
Affiliation(s)
- Yao Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuqing Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Dan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.J.); (J.M.); (Y.L.); (Y.D.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Zhao G, Wang S, Nie G, Li N. Unlocking the power of nanomedicine: Cell membrane-derived biomimetic cancer nanovaccines for cancer treatment. MED 2024; 5:660-688. [PMID: 38582088 DOI: 10.1016/j.medj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Over the past decades, nanomedicine researchers have dedicated their efforts to developing nanoscale platforms capable of more precisely delivering drug payloads to attack tumors. Cancer nanovaccines are exhibiting a distinctive capability in inducing tumor-specific antitumor responses. Nevertheless, there remain numerous challenges that must be addressed for cancer nanovaccines to evoke sufficient therapeutic effects. Cell membrane-derived nanovaccines are an emerging class of cancer vaccines that comprise a synthetic nanoscale core camouflaged by naturally derived cell membranes. The specific cell membrane has a biomimetic nanoformulation with several distinctive abilities, such as immune evasion, enhanced biocompatibility, and tumor targeting, typically associated with a source cell. Here, we discuss the advancements of cell membrane-derived nanovaccines and how these vaccines are used for cancer therapeutics. Translational endeavors are currently in progress, and additional research is also necessary to effectively address crucial areas of demand, thereby facilitating the future successful translation of these emerging vaccine platforms.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100000, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
7
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
8
|
Shuwen H, Yifei S, Xinyue W, Zhanbo Q, Xiang Y, Xi Y. Advances in bacteria-based drug delivery systems for anti-tumor therapy. Clin Transl Immunology 2024; 13:e1518. [PMID: 38939727 PMCID: PMC11208082 DOI: 10.1002/cti2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, bacteria have gained considerable attention as a promising drug carrier that is critical in improving the effectiveness and reducing the side effects of anti-tumor drugs. Drug carriers can be utilised in various forms, including magnetotactic bacteria, bacterial biohybrids, minicells, bacterial ghosts and bacterial spores. Additionally, functionalised and engineered bacteria obtained through gene engineering and surface modification could provide enhanced capabilities for drug delivery. This review summarises the current studies on bacteria-based drug delivery systems for anti-tumor therapy and discusses the prospects and challenges of bacteria as drug carriers. Furthermore, our findings aim to provide new directions and guidance for the research on bacteria-based drug systems.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiang ProvinceChina
| | - Song Yifei
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Wu Xinyue
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
| | - Yu Xiang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Yang Xi
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| |
Collapse
|
9
|
Li N, Wu M, Wang L, Tang M, Xin H, Deng K. Efficient Isolation of Outer Membrane Vesicles (OMVs) Secreted by Gram-Negative Bacteria via a Novel Gradient Filtration Method. MEMBRANES 2024; 14:135. [PMID: 38921502 PMCID: PMC11205348 DOI: 10.3390/membranes14060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Bacterial extracellular vesicles (bEVs) secreted by Gram-negative bacteria are referred to as outer membrane vesicles (OMVs) because they originate in the outer membrane. OMVs are membrane-coated vesicles 20-250 nm in size. They contain lipopolysaccharide (LPS), peptidoglycan, proteins, lipids, nucleic acids, and other substances derived from their parent bacteria and participate in the transmission of information to host cells. OMVs have broad prospects in terms of potential application in the fields of adjuvants, vaccines, and drug delivery vehicles. Currently, there remains a lack of efficient and convenient methods to isolate OMVs, which greatly limits OMV-related research. In this study, we developed a fast, convenient, and low-cost gradient filtration method to separate OMVs that can achieve industrial-scale production while maintaining the biological activity of the isolated OMVs. We compared the gradient filtration method with traditional ultracentrifugation to isolate OMVs from probiotic Escherichia coli Nissle 1917 (EcN) bacteria. Then, we used RAW264.7 macrophages as an in vitro model to study the influence on the immune function of EcN-derived OMVs obtained through the gradient filtration method. Our results indicated that EcN-derived OMVs were efficiently isolated using our gradient filtration method. The level of OMV enrichment obtained via our gradient filtration method was about twice as efficient as that achieved through traditional ultracentrifugation. The EcN-derived OMVs enriched through the gradient filtration method were successfully taken up by RAW264.7 macrophages and induced them to secrete pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukins (ILs) 6 and 1β, as well as anti-inflammatory cytokine IL-10. Furthermore, EcN-derived OMVs induced more anti-inflammatory response (i.e., IL-10) than pro-inflammatory response (i.e., TNF-α, IL-6, and IL-1β). These results were consistent with those reported in the literature. The related literature reported that EcN-derived OMVs obtained through ultracentrifugation could induce stronger anti-inflammatory responses than pro-inflammatory responses in RAW264.7 macrophages. Our simple and novel separation method may therefore have promising prospects in terms of applications involving the study of OMVs.
Collapse
Affiliation(s)
- Ning Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (M.W.); (L.W.); (M.T.); (H.X.)
| | | | | | | | | | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (M.W.); (L.W.); (M.T.); (H.X.)
| |
Collapse
|
10
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Moore KA, Petersen AP, Zierden HC. Microorganism-derived extracellular vesicles: emerging contributors to female reproductive health. NANOSCALE 2024; 16:8216-8235. [PMID: 38572613 DOI: 10.1039/d3nr05524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that carry small molecules, nucleic acids, and proteins long distances in the body facilitating cell-cell communication. Microorganism-derived EVs mediate communication between parent cells and host cells, with recent evidence supporting their role in biofilm formation, horizontal gene transfer, and suppression of the host immune system. As lipid-bound bacterial byproducts, EVs demonstrate improved cellular uptake and distribution in vivo compared to cell-free nucleic acids, proteins, or small molecules, allowing these biological nanoparticles to recapitulate the effects of parent cells and contribute to a range of human health outcomes. Here, we focus on how EVs derived from vaginal microorganisms contribute to gynecologic and obstetric outcomes. As the composition of the vaginal microbiome significantly impacts women's health, we discuss bacterial EVs from both healthy and dysbiotic vaginal microbiota. We also examine recent work done to evaluate the role of EVs from common vaginal bacterial, fungal, and parasitic pathogens in pathogenesis of female reproductive tract disease. We highlight evidence for the role of EVs in women's health, gaps in current knowledge, and opportunities for future work. Finally, we discuss how leveraging the innate interactions between microorganisms and mammalian cells may establish EVs as a novel therapeutic modality for gynecologic and obstetric indications.
Collapse
Affiliation(s)
- Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| | - Alyssa P Petersen
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Hannah C Zierden
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
12
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|
13
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
15
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
16
|
Lu Y, Mei N, Ying Y, Wang D, Li X, Zhao Y, Zhu Y, Shen S, Yin B. Bacteria-Based Nanoprobes for Cancer Therapy. Int J Nanomedicine 2024; 19:759-785. [PMID: 38283198 PMCID: PMC10821665 DOI: 10.2147/ijn.s438164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Surgical removal together with chemotherapy and radiotherapy has used to be the pillars of cancer treatment. Although these traditional methods are still considered as the first-line or standard treatments, non-operative situation, systemic toxicity or resistance severely weakened the therapeutic effect. More recently, synthetic biological nanocarriers elicited substantial interest and exhibited promising potential for combating cancer. In particular, bacteria and their derivatives are omnipotent to realize intrinsic tumor targeting and inhibit tumor growth with anti-cancer agents secreted and immune response. They are frequently employed in synergistic bacteria-mediated anticancer treatments to strengthen the effectiveness of anti-cancer treatment. In this review, we elaborate on the development, mechanism and advantage of bacterial therapy against cancer and then systematically introduce the bacteria-based nanoprobes against cancer and the recent achievements in synergistic treatment strategies and clinical trials. We also discuss the advantages as well as the limitations of these bacteria-based nanoprobes, especially the questions that hinder their application in human, exhibiting this novel anti-cancer endeavor comprehensively.
Collapse
Affiliation(s)
- Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yajing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Xiao Y, Wu M, Xue C, Wang Y. Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy. Curr Drug Deliv 2024; 21:403-420. [PMID: 37143265 DOI: 10.2174/1567201820666230504120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
18
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
19
|
Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023; 11:1284292. [PMID: 37915541 PMCID: PMC10616255 DOI: 10.3389/fchem.2023.1284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Photodynamic Therapy (PDT) is an effective tumor treatment strategy that not only induces photocytotoxicity to kill tumor cells directly but also activates the immune system in the body to generate tumor-specific immunity, preventing cancer metastasis and recurrence. However, some limitations of PDT limit the therapeutic efficacy in deep tumors. Previous studies have used different types of nanoparticles (NPs) as drug carriers of photosensitizers (PSs) to overcome the shortcomings of PDT and improve therapeutic efficacy. Among them, bacterial outer membrane vesicles (OMVs) have natural advantages as carriers for PS delivery. In addition to the targeted delivery of PSs into tumor cells, their unique immunogenicity helps them to serve as immune adjuvants to enhance the PDT-induced immune effect, providing new ideas for photodynamic anticancer therapy. Therefore, in this review, we will introduce the biogenesis and anticancer functions of OMVs and the research on them as drug delivery carriers in PDT. Finally, we also discuss the challenges and prospects of OMVs as a versatile drug delivery carrier for photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - ZunZhen Zhou
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
20
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
21
|
Nie X, Shi C, Chen X, Yu C, Jiang Z, Xu G, Lin Y, Tang M, Luan Y. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel. Acta Biomater 2023; 169:306-316. [PMID: 37574158 DOI: 10.1016/j.actbio.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Prophylactic tumor vaccines hold great promise against tumor occurrence. However, their clinical efficacy remains low due to inadequate activation of strong-sustainable immunity. Herein, a biomembrane hydrogel was designed as a powerful single-shot prophylactic tumor vaccine. Mannose-decorated hybrid biomembrane (MHCM) modified with oxidized sodium alginate (OSA) was designed as a gelator (O-MHCM), where the hybrid biomembrane (HCM) is a hybridization of bacterial outer membrane vesicles (OMV) and tumor cell membranes (TCM). The O-MHCM enables quick gelation subcutaneously where the cysteine protease inhibitor E64 is encapsulated in hydrogel micropores. After a single vaccination of E64@O-MHCM hydrogel, MHCM and E64 are released sustainably due to OSA moiety degradation. The MHCM enables active targeting to dendritic cells (DC) and effective DC maturation. Meanwhile, the E64 enables sufficient antigen availability for subsequent cross presentation. Ultimately, strong and sustainable T lymphocyte-mediated immunity was elicited, demonstrating a strong prophylactic effect against breast tumors. This study provides a long-lasting platform to prevent tumor occurrence, opening an innovative avenue for the design of a single-shot prophylactic tumor vaccine. STATEMENT OF SIGNIFICANCE: Developing a single-shot prophylactic tumor vaccine to elicit strong-sustainable immunity is of great interest clinically. Here, a prophylactic tumor vaccine was designed using an injectable biomembrane hydrogel for achieving strong-sustainable immunity. The mannose-tailored hybrid biomembrane was modified with oxidized sodium alginate to result in a gelator, which enabled the formation of the hydrogel after subcutaneous injection. Cysteine protease inhibitor E64 was incorporated into the micropores of the hydrogel. The hydrogel induced strong-sustainable immunity through the continuous release of active components. This was facilitated by the mannose moiety, which enabled active targeting, as well as the antigen and adjuvant function of biomembrane, and the E64-enabled suppression of antigen degradation. The biomembrane hydrogel demonstrated powerful prevention of 4T1 breast tumors. This study offers an attractive strategy for designing a single-shot prophylactic tumor vaccine.
Collapse
Affiliation(s)
- Xinxin Nie
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhuan Shi
- Department of Pharmacy, Dongying People's Hospital, Dongying, 257091, China
| | - Xiangwu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Cancan Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zeyu Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guixiang Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
Jiang Y, Wang L, Yang B, Ma G, Chen Z, Ma J, Chang X, Fang L, Wang Z. Bifidobacterium-derived membrane vesicles inhibit triple-negative breast cancer growth by inducing tumor cell apoptosis. Mol Biol Rep 2023; 50:7547-7556. [PMID: 37498438 DOI: 10.1007/s11033-023-08702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Bacterial outer membrane vesicles have gained increasing attention for its antitumor effect and application in drug delivery. However, the bacterial membrane vesicles (MVs) that are secreted by Gram-positive bacteria are rarely mentioned. Bifidobacterium has a certain anti-tumor effect, but there is a certain risk when injected into human body. Here we investigated the potential of Bifidobacterium-derived membrane vesicles (B-MVs) as therapeutic agents to treat triple-negative breast cancer. METHODS AND RESULTS Firstly, we discovered that Bifidobacterium can produce B-MVs and isolated them. In vivo, we found that B-MVs can inhibit tumor growth in mice and the mice were in good state. H&E staining displayed extensive apoptotic cells in tumor tissues. Western blotting and immunohistochemistry showed that B-MVs increased the expression of Bax, while decreased the expression of Bcl-2. These results suggested that B-MVs may induce apoptosis of tumor cells in vivo. Furthermore, to further confirm this phenomenon, we conducted experiments in vitro. Hoechst 33,258 staining assay, flow cytometry and western blotting also demonstrated B-MVs promoted cell apoptosis in vitro. CONCLUSIONS We speculate B-MVs may inhibit tumor growth by inducing tumor cell apoptosis in triple-negative breast cancer, which provided a new direction in the treatment of TNBC.
Collapse
Affiliation(s)
- Yongzhu Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lanxi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bangya Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guanrong Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiqi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiulin Chang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
24
|
Xiao M, Li G, Yang H. Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles. Front Microbiol 2023; 14:1225513. [PMID: 37720140 PMCID: PMC10500606 DOI: 10.3389/fmicb.2023.1225513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Bacteria-host interaction is a common, relevant, and intriguing biological phenomena. The host reacts actively or passively to the bacteria themselves, their products, debris, and so on, through various defense systems containing the immune system, the bacteria communicate with the local or distal tissues of the host via their own surface antigens, secreted products, nucleic acids, etc., resulting in relationships of attack and defense, adaptation, symbiosis, and even collaboration. The significance of bacterial membrane vesicles (MVs) as a powerful vehicle for the crosstalk mechanism between the two is growing. In the recent decade, the emergence of MVs in microbial interactions and a variety of bacterial infections, with multiple adhesions to host tissues, cell invasion and evasion of host defense mechanisms, have brought MVs to the forefront of bacterial pathogenesis research. Whereas MVs are a complex combination of molecules not yet fully understood, research into its effects, targeting and pathogenic components will advance its understanding and utilization. This review will summarize structural, extraction and penetration information on several classes of MVs and emphasize the role of MVs in transport and immune response activation. Finally, the potential of MVs as a therapeutic method will be highlighted, as will future research prospects.
Collapse
Affiliation(s)
- Min Xiao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
25
|
Liu X, Xiao C, Xiao K. Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy. J Nanobiotechnology 2023; 21:287. [PMID: 37608298 PMCID: PMC10463632 DOI: 10.1186/s12951-023-02064-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Nanotechnology offers the possibility of revolutionizing cancer theranostics in the new era of precision oncology. Extracellular vesicles (EVs)-like biomimetic nanoparticles (EBPs) have recently emerged as a promising platform for targeted cancer drug delivery. Compared with conventional synthetic vehicles, EBPs have several advantages, such as lower immunogenicity, longer circulation time, and better targeting capability. Studies on EBPs as cancer therapeutics are rapidly progressing from in vitro experiments to in vivo animal models and early-stage clinical trials. Here, we describe engineering strategies to further improve EBPs as effective anticancer drug carriers, including genetic manipulation of original cells, fusion with synthetic nanomaterials, and direct modification of EVs. These engineering approaches can improve the anticancer performance of EBPs, especially in terms of tumor targeting effectiveness, stealth property, drug loading capacity, and integration with other therapeutic modalities. Finally, the current obstacles and future perspectives of engineered EBPs as the next-generation delivery platform for anticancer drugs are discussed.
Collapse
Affiliation(s)
- Xinyi Liu
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunxiu Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jingcheng Laboratory (Frontier Medical Center), Chengdu, 610041, China.
| |
Collapse
|
26
|
Chen H, Zheng X, Li L, Huang L, Huang W, Ma Y. Peptide-Based Therapeutic HPV Cancer Vaccine Synthesized via Bacterial Outer Membrane Vesicles. Int J Nanomedicine 2023; 18:4541-4554. [PMID: 37576463 PMCID: PMC10422965 DOI: 10.2147/ijn.s416706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Peptide-based vaccines have broad application prospects because of their safety, simple preparation, and effectiveness, especially in the development of personalized cancer vaccines, which have shown great advantages. However, the current peptide-based vaccines often require artificial synthesis and intricate delivery technology, which increases the cost and complexity of preparation. Methods Here, we developed a simple technique for combining a peptide and a delivery system using the natural secretion system of bacteria. Specifically, we biosynthesized an antigenic peptide in bacteria, which was then extracellularly released through the bacterial secretory vesicles, thus simultaneously achieving the biosynthesis and delivery of the peptide. Results The system utilizes the natural properties of bacterial vesicles to promote antigen uptake and dendritic cell (DC) maturation. Therefore, tumor-specific CD4+ Th1 and CD8+ cytotoxic T lymphocyte (CTL) responses were induced in TC-1 tumor-bearing mice, thereby efficiently suppressing tumor growth. Conclusion This research promotes innovation and extends the application of peptide-based vaccine biosynthesis technology. Importantly, it provides a new method for personalized cancer immunotherapy that uses screened peptides as antigens in the future.
Collapse
Affiliation(s)
- Haoqian Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Lingjue Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Lishuxin Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| |
Collapse
|
27
|
Li J, Zeng H, Li L, Song M, Dong M. Biomembrane-wrapped gene delivery nanoparticles for cancer therapy. Front Bioeng Biotechnol 2023; 11:1211753. [PMID: 37351470 PMCID: PMC10282192 DOI: 10.3389/fbioe.2023.1211753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
As a promising strategy, gene delivery for cancer treatment accepts encouraging progress due to its high efficacy, low toxicity, and exclusive selectivity. However, the delivery efficiency, specific biological distribution, targeted uptake, and biosafety of naked nucleic acid agents still face serious challenges, which limit further clinical application. To overcome the above bottleneck, safe and efficient functional nanovectors are developed to improve the delivery efficiency of nucleic acid agents. In recent years, emerging membrane-wrapped biomimetic nanoparticles (MBNPs) based on the concept of "imitating nature" are well known for their advantages, such as low immunogenicity and long cycle time, and especially play a crucial role in improving the overall efficiency of gene delivery and reducing adverse reactions. Therefore, combining MBNPs and gene delivery is an effective strategy to enhance tumor treatment efficiency. This review presents the mechanism of gene therapy and the current obstacles to gene delivery. Remarkably, the latest development of gene delivery MBNPs and the strategies to overcome these obstacles are summarized. Finally, the future challenges and prospects of gene delivery MBNPs toward clinical transformation are introduced. The principal purpose of this review is to discuss the biomedical potential of gene delivery MBNPs for cancer therapy and to provide guidance for further enhancing the efficiency of tumor gene therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Geriatrics, Chengdu Fifth People’s Hospital, Geriatric Diseases Institute of Chengdu, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan, China
| | - Luwei Li
- College of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ming Song
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Mingqing Dong
- Department of Geriatrics, Chengdu Fifth People’s Hospital, Geriatric Diseases Institute of Chengdu, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Aytar Çelik P, Erdogan-Gover K, Barut D, Enuh BM, Amasya G, Sengel-Türk CT, Derkus B, Çabuk A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023; 15:pharmaceutics15041052. [PMID: 37111538 PMCID: PMC10142793 DOI: 10.3390/pharmaceutics15041052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are known to be critical communication tools in several pathophysiological processes between bacteria and host cells. Given this situation, BMVs for transporting and delivering exogenous therapeutic cargoes have been inspiring as promising platforms for developing smart drug delivery systems (SDDSs). In the first section of this review paper, starting with an introduction to pharmaceutical technology and nanotechnology, we delve into the design and classification of SDDSs. We discuss the characteristics of BMVs including their size, shape, charge, effective production and purification techniques, and the different methods used for cargo loading and drug encapsulation. We also shed light on the drug release mechanism, the design of BMVs as smart carriers, and recent remarkable findings on the potential of BMVs for anticancer and antimicrobial therapy. Furthermore, this review covers the safety of BMVs and the challenges that need to be overcome for clinical use. Finally, we discuss the recent advancements and prospects for BMVs as SDDSs and highlight their potential in revolutionizing the fields of nanomedicine and drug delivery. In conclusion, this review paper aims to provide a comprehensive overview of the state-of-the-art field of BMVs as SDDSs, encompassing their design, composition, fabrication, purification, and characterization, as well as the various strategies used for targeted delivery. Considering this information, the aim of this review is to provide researchers in the field with a comprehensive understanding of the current state of BMVs as SDDSs, enabling them to identify critical gaps and formulate new hypotheses to accelerate the progress of the field.
Collapse
Affiliation(s)
- Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir 26110, Turkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Kubra Erdogan-Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ceyda Tuba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
29
|
Ren C, Li Y, Cong Z, Li Z, Xie L, Wu S. Bioengineered bacterial outer membrane vesicles encapsulated Polybia–mastoparan I fusion peptide as a promising nanoplatform for bladder cancer immune-modulatory chemotherapy. Front Immunol 2023; 14:1129771. [PMID: 36999028 PMCID: PMC10043419 DOI: 10.3389/fimmu.2023.1129771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundNanosized bacterial outer membrane vesicles (OMVs) secreted by Gram-negative bacteria have emerged as a novel antitumor nanomedicine reagent due to their immunostimulatory properties. The encapsulated bacterial composition in OMVs can be edited via manipulating bioengineering technology on paternal bacteria, allowing us to design an ingenious antitumor platform by loading the Polybia–mastoparan I (MPI) fusion peptide into OMVs.MethodsOMVs containing the MPI fusion peptide were obtained from bioengineered Escherichia coli transformed with recombinant plasmid. The antitumor efficacy of bioengineered OMVs in vitro was verified by performing cell viability and wound-healing and apoptosis assays using MB49 and UMUC3 cells, respectively. Subcutaneous MB49 tumor-bearing mice were involved to investigate the tumor inhibition ability of bioengineered OMVs. Moreover, the activated immune response in tumor and the biosafety were also evaluated in detail.ResultsThe resulting OMVs had the successful encapsulation of MPI fusion peptides and were subjected to physical characterization for morphology, size, and zeta potential. Cell viabilities of bladder cancer cells including MB49 and UMUC3 rather than a non-carcinomatous cell line (bEnd.3) were decreased when incubated with bioengineered OMVs. In addition, bioengineered OMVs restrained migration and induced apoptosis of bladder cancer cells. With intratumor injection of bioengineered OMVs, growths of subcutaneous MB49 tumors were significantly restricted. The inherent immunostimulation of OMVs was demonstrated to trigger maturation of dendritic cells (DCs), recruitment of macrophages, and infiltration of cytotoxic T lymphocytes (CTLs), resulting in the increased secretion of pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ). Meanwhile, several lines of evidence also indicated that bioengineered OMVs had satisfactory biosafety.ConclusionBioengineered OMVs fabricated in the present study were characterized by strong bladder cancer suppression and great biocompatibility, providing a new avenue for clinical bladder cancer therapy.
Collapse
Affiliation(s)
- Chunyu Ren
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, Guangdong, China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, Guangdong, China
- *Correspondence: Yangyang Li, ; Song Wu,
| | - Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, Guangdong, China
| | - Zhuoran Li
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Leiming Xie
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, Guangdong, China
| | - Song Wu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, Guangdong, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- *Correspondence: Yangyang Li, ; Song Wu,
| |
Collapse
|
30
|
Liu Y, Chen J, Raj K, Baerg L, Nathan N, Philpott DJ, Mahadevan R. A Universal Strategy to Promote Secretion of G+/G- Bacterial Extracellular Vesicles and Its Application in Host Innate Immune Responses. ACS Synth Biol 2023; 12:319-328. [PMID: 36592614 DOI: 10.1021/acssynbio.2c00583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both Gram-positive and Gram-negative bacteria release nanosized extracellular vesicles called membrane vesicles (MVs, 20-400 nm), which have great potential in various biomedical applications due to their abilities to deliver effector molecules and induce therapeutic responses. To fully utilize bacterial MVs for therapeutic purposes, regulated and enhanced production of MVs would be highly advantageous. In this study, we developed a universal method to enhance MV yields in both G+/G- bacteria through an autonomous controlled peptidoglycan hydrolase (PGase) expression system. A significant increase (9.37-fold) of MV concentration was observed in engineered E. coli Nissle 1917 compared to the wild-type. With the help of this autonomous system, for the first time we experimentally confirmed horizontal gene transfer and nutrient acquisition in a cocultured bacterial consortium. Furthermore, the engineered probiotic E. coli strains with high yield of MVs showed higher activation of the innate immune responses in human embryonic kidney 293T (HEK293T) and human colorectal carcinoma cells (HCT116), thereby demonstrating the great potential of engineering probiotics in immunology and further living therapeutics in humans.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kaushik Raj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Lauren Baerg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Nayanan Nathan
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
31
|
Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, Mirzaei R. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agent Cancer 2023; 18:3. [PMID: 36658631 PMCID: PMC9850788 DOI: 10.1186/s13027-023-00480-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovati Khamsi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Bajelan
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
32
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
33
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
35
|
Cui C, Guo T, Zhang S, Yang M, Cheng J, Wang J, Kang J, Ma W, Nian Y, Sun Z, Weng H. Bacteria-derived outer membrane vesicles engineered with over-expressed pre-miRNA as delivery nanocarriers for cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102585. [PMID: 35901958 DOI: 10.1016/j.nano.2022.102585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Outer membrane vesicles (OMVs) of Escherichia coli as nanoscale spherical vesicles have been recently used in cancer therapy as drug carriers. However, most of them need complicated methods to load cargos. Herein, we proposed an inexpensive and potentially mass-produced method for the preparation of OMV engineered with over-expressed pre-miRNA. In this work, we found that OMV can be released and inherit over-expressed tRNALys-pre-miRNA from mother E. coli that directly used for the tumor therapy. The eukaryotic cells infection experiments revealed that the over-expressed pre-miRNA inside OMV could be released and processed into mature miRNAs with the aid of the camouflage of "tRNA scaffold". Moreover, the group in vivo treated with targeted OMVtRNA-pre-miR-126 obviously inhibited the expression of target oncogenic CXCR4, and significantly restrain the proliferation of breast cancer tissues. Together, these findings indicated that the OMV-based platform is a versatile and powerful strategy for personalized tumor therapy directly and specificity.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingting Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuai Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mingyan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiaqi Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiajia Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wenjie Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanru Nian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
36
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
37
|
Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev 2022; 185:114294. [PMID: 35436569 DOI: 10.1016/j.addr.2022.114294] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
Abstract
Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke J Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol 2022; 13:840550. [PMID: 35693784 PMCID: PMC9174424 DOI: 10.3389/fimmu.2022.840550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid particles released by virtually every living cell. EVs carry bioactive molecules, shuttle from cells to cells and transduce signals, regulating cell growth and metabolism. Pathogenic bacteria can cause serious infections via a wide range of strategies, and host immune systems also develop extremely complex adaptations to counteract bacterial infections. As notable carriers, EVs take part in the interaction between the host and bacteria in several approaches. For host cells, several strategies have been developed to resist bacteria via EVs, including expelling damaged membranes and bacteria, neutralizing toxins, triggering innate immune responses and provoking adaptive immune responses in nearly the whole body. For bacteria, EVs function as vehicles to deliver toxins and contribute to immune escape. Due to their crucial functions, EVs have great application potential in vaccines, diagnosis and treatments. In the present review, we highlight the most recent advances, application potential and remaining challenges in understanding EVs in the interaction between the host and bacteria.
Collapse
Affiliation(s)
- Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
39
|
Ding Y, Wang L, Li H, Miao F, Zhang Z, Hu C, Yu W, Tang Q, Shao G. Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J Nanobiotechnology 2022; 20:214. [PMID: 35524277 PMCID: PMC9073823 DOI: 10.1186/s12951-022-01429-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Luhong Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Han Li
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Fengqin Miao
- Medical School of Southeast University, Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Guoliang Shao
- Department of Interventional Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
40
|
The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol 2022; 40:1173-1194. [DOI: 10.1016/j.tibtech.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
|
41
|
Liu S, Wu X, Chandra S, Lyon C, Ning B, jiang L, Fan J, Hu TY. Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharm Sin B 2022; 12:3822-3842. [PMID: 36213541 PMCID: PMC9532556 DOI: 10.1016/j.apsb.2022.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted by both eukaryotes and prokaryotes, and are present in all biological fluids of vertebrates, where they transfer DNA, RNA, proteins, lipids, and metabolites from donor to recipient cells in cell-to-cell communication. Some EV components can also indicate the type and biological status of their parent cells and serve as diagnostic targets for liquid biopsy. EVs can also natively carry or be modified to contain therapeutic agents (e.g., nucleic acids, proteins, polysaccharides, and small molecules) by physical, chemical, or bioengineering strategies. Due to their excellent biocompatibility and stability, EVs are ideal nanocarriers for bioactive ingredients to induce signal transduction, immunoregulation, or other therapeutic effects, which can be targeted to specific cell types. Herein, we review EV classification, intercellular communication, isolation, and characterization strategies as they apply to EV therapeutics. This review focuses on recent advances in EV applications as therapeutic carriers from in vitro research towards in vivo animal models and early clinical applications, using representative examples in the fields of cancer chemotherapeutic drug, cancer vaccine, infectious disease vaccines, regenerative medicine and gene therapy. Finally, we discuss current challenges for EV therapeutics and their future development.
Collapse
|
42
|
Wang M, Zhao J, Jiang H, Wang X. Tumor-targeted nano-delivery system of therapeutic RNA. MATERIALS HORIZONS 2022; 9:1111-1140. [PMID: 35134106 DOI: 10.1039/d1mh01969d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The birth of RNAi technology has pioneered actionability at the molecular level. Compared to DNA, RNA is less stable and therefore requires more demanding delivery vehicles. With their flexible size, shape, structure, and accessible surface modification, non-viral vectors show great promise for application in RNA delivery. Different non-viral vectors have different ways of binding to RNA. Low immunotoxicity gives RNA significant advantages in tumor treatment. However, the delivery of RNA still has many limitations in vivo. This manuscript summarizes the size-targeting dependence of different organs, followed by a summary of nanovesicles currently in or undergoing clinical trials. It also reviews all RNA delivery systems involved in the current study, including natural, bionic, organic, and inorganic systems. It summarizes the advantages and disadvantages of different delivery methods, which will be helpful for future RNA vehicle design. It is hoped that this will be helpful for gene therapy of clinical tumors.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jingzhou Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
43
|
Lee JH, Song J, Kim IG, You G, Kim H, Ahn JH, Mok H. Exosome-mediated delivery of transforming growth factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8 agonists for combination therapy of tumors. Acta Biomater 2022; 141:354-363. [PMID: 35007784 DOI: 10.1016/j.actbio.2022.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
In this study, combination therapy with the transforming growth factor-β receptor I (TGFβRI) kinase inhibitor SD-208 and a toll-like receptor (TLR)-7/8 agonist resiquimod (R848) was examined along with serum-derived exosomes (EXOs) as versatile carriers. SD-208-encapsulated EXOs (SD-208/EXOs) and R848-encapsulated EXOs (R848/EXOs) were successfully prepared with a size of 87 ± 8 nm and 51 ± 4 nm, respectively, which were stable in aqueous solution at pH 7.4. SD-208/EXOs and R848/EXOs reduced the migration of cancer cells (B16F10 and PC-3) and triggered the release of proinflammatory cytokines from stimulated macrophages and dendritic cells, respectively. The fluorescent dye-labeled EXOs showed significantly improved penetration through the PC-3/fibroblast co-culture spheroids and enhanced accumulation in the B16F10 mouse tumor model compared with the free fluorescent dye. In addition, the combination therapy of R848/EXOs (R848 dose of 0.36 mg/kg) and SD-208/EXOs (SD-208 dose of 0.75 mg/kg) reduced tumor growth and improved survival rate at low doses in the B16F10 tumor xenograft model. Taken together, the combination therapy using the TGFβRI kinase inhibitor and TLR 7/8 agonist with EXOs may serve as a promising strategy to treat melanoma and prostate cancer. STATEMENT OF SIGNIFICANCE: Owing to the prevalence of several non-responding cancers that resist treatment, it is necessary to identify a novel combined treatment strategy with biomaterials to maximize therapeutic efficacy and minimize the undesirable side effects. In this study, we aimed to examine the use of the TGFβRI kinase inhibitor SD-208 and the TLR7/8 agonist resiquimod (R848) encapsulated within serum-derived EXOs for their synergistic antitumor effects. We first demonstrated that combined treatment with SD-208 and R848 can be a convincing strategy to circumvent tumor growth in vivo using serum-derived exosomes as promising carriers. Therefore, we believe this manuscript would be of great interest to the biomaterial communities especially who are studying immunotherapy.
Collapse
|
44
|
Morishita M, Sagayama R, Yamawaki Y, Yamaguchi M, Katsumi H, Yamamoto A. Activation of Host Immune Cells by Probiotic-Derived Extracellular Vesicles via TLR2-Mediated Signaling Pathways. Biol Pharm Bull 2022; 45:354-359. [PMID: 35228401 DOI: 10.1248/bpb.b21-00924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since probiotic-derived extracellular vesicles (EVs) are capable of activating innate immunity, they are expected to be useful as novel adjuvants. To elucidate the mechanisms underlying the immunostimulatory effects of EVs released from probiotic cells, we newly investigated the role of Toll-like receptor 2 (TLR2) and immune cell downstream signaling in the generation of proinflammatory cytokines. Isolated Bifidobacterium- and Lactobacillus-derived EVs expressed peptidoglycan, one of the major pathogen-associated molecular patterns. EVs particle diameter were approximately 110-120 nm with a negative-zeta potential. The generation of proinflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in TLR2-expressing mouse macrophage-like RAW264.7 cells and mouse dendritic DC2.4 cells treated with Bifidobacterium- and Lactobacillus-derived EVs decreased after the addition of T2.5, a TLR2 inhibitory antibody. Furthermore, we showed that the signaling pathways of c-Jun-NH2-terminal kinase (JNK)/mitogen-activated protein kinases (MAPK) and nuclear factor-kappaB (NF-κB) were also involved in the production of proinflammatory cytokines from EV-treated immune cells. These results provide valuable information for understanding of the host biological function induced by probiotic-derived EVs, which is helpful for developing an EV-based immunotherapeutic system.
Collapse
Affiliation(s)
| | - Risa Sagayama
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Yuta Yamawaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | | | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| |
Collapse
|
45
|
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-115. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
Antibiotic therapy is one of the most important approaches against bacterial infections. However, the improper use of antibiotics and the emergence of drug resistance have compromised the efficacy of traditional antibiotic therapy. In this regard, it is of great importance and significance to develop more potent antimicrobial therapies, including the development of functionalized antibiotics delivery systems and antibiotics-independent antimicrobial agents. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria and with similar structure to cell-derived exosomes, are natural functional nanomaterials and known to play important roles in many bacterial life events, such as communication, biofilm formation and pathogenesis. Recently, more and more reports have demonstrated the use of OMVs as either active antibacterial agents or antibiotics delivery carriers, implying the great potentials of OMVs in antibacterial therapy. Herein, we aim to provide a comprehensive understanding of OMV and its antibacterial applications, including its biogenesis, biofunctions, isolation, purification and its potentials in killing bacteria, delivering antibiotics and developing vaccine or immunoadjuvants. In addition, the concerns in clinical use of OMVs and the possible solutions are discussed. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria has led to the failure of traditional antibiotic therapy, and thus become a big threat to human beings. In this regard, developing more potent antibacterial approaches is of great importance and significance. Recently, bacterial outer membrane vesicles (OMVs), which are natural functional nanomaterials secreted by Gram-negative bacteria, have been used as active agents, drug carriers and vaccine adjuvant for antibacterial therapy. This review provides a comprehensive understanding of OMVs and summarizes the recent progress of OMVs in antibacterial applications. The concerns of OMVs in clinical use and the possible solutions are also discussed. As such, this review may guide the future works in antibacterial OMVs and appeal to both scientists and clinicians.
Collapse
Affiliation(s)
- Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingxi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Allemailem KS. Innovative Approaches of Engineering Tumor-Targeting Bacteria with Different Therapeutic Payloads to Fight Cancer: A Smart Strategy of Disease Management. Int J Nanomedicine 2021; 16:8159-8184. [PMID: 34938075 PMCID: PMC8687692 DOI: 10.2147/ijn.s338272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional therapies for cancer eradication like surgery, radiotherapy, and chemotherapy, even though most widely used, still suffer from some disappointing outcomes. The limitations of these therapies during cancer recurrence and metastasis demonstrate the need for better alternatives. Some bacteria preferentially colonize and proliferate inside tumor mass; thus these bacteria can be used as ideal candidates to deliver antitumor therapeutic agents. The bacteria like Bacillus spp., Clostridium spp., E. coli, Listeria spp., and Salmonella spp. can be reprogrammed to produce, transport, and deliver anticancer agents, eg, cytotoxic agents, prodrug converting enzymes, immunomodulators, tumor stroma targeting agents, siRNA, and drug-loaded nanoformulations based on clinical requirements. In addition, these bacteria can be genetically modified to express various functional proteins and targeting ligands that can enhance the targeting approach and controlled drug-delivery. Low tumor-targeting and weak penetration power deep inside the tumor mass limits the use of anticancer drug-nanoformulations. By using anticancer drug nanoformulations and other therapeutic payloads in combination with antitumor bacteria, it makes a synergistic effect against cancer by overcoming the individual limitations. The tumor-targeting bacteria can be either used as a monotherapy or in addition with other anticancer therapies like photothermal therapy, photodynamic therapy, and magnetic field therapy to accomplish better clinical outcomes. The toxicity issues on normal tissues is the main concern regarding the use of engineered antitumor bacteria, which requires deeper research. In this article, the mechanism by which bacteria sense tumor microenvironment, role of some anticancer agents, and the recent advancement of engineering bacteria with different therapeutic payloads to combat cancers has been reviewed. In addition, future prospective and some clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
47
|
Ye Z, Liang L, Lu H, Shen Y, Zhou W, Li Y. Nanotechnology-Employed Bacteria-Based Delivery Strategy for Enhanced Anticancer Therapy. Int J Nanomedicine 2021; 16:8069-8086. [PMID: 34934313 PMCID: PMC8684392 DOI: 10.2147/ijn.s329855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria and their derivatives (membrane vesicles, MVs) exhibit great advantages for targeting hypoxic tumor cores, strong penetration ability and activating immune responses, holding great potential as auspicious candidates for therapeutic and drug-delivery applications. However, the safety issues and low therapeutic efficiency by single administration still need to be solved. To further optimize their performance and to utilize their natural abilities, scientists have strived to modify bacteria with new moieties on their surface while preserving their advantages. The aim of this review is to give a comprehensive overview of a non-genetic engineering modification strategy that can be used to optimize the bacteria with nanomaterials and the design strategy that can be used to optimize MVs for better targeted therapy. Here, the advantages and disadvantages of these processes and their applicability for the development of bacteria-related delivery system as antitumor therapeutic agents are discussed. The prospect and the challenges of the above targeted delivery system are also proposed.
Collapse
Affiliation(s)
- Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Lizhen Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Huazhen Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenwu Zhou
- National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
48
|
Çelik P, Derkuş B, Erdoğan K, Barut D, Manga EB, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 2021; 54:107869. [PMID: 34793882 DOI: 10.1016/j.biotechadv.2021.107869] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Bacterial membrane vesicles are cupped-shaped structures formed by bacteria in response to environmental stress, genetic alteration, antibiotic exposure, and others. Due to the structural similarities shared with the producer organism, they can retain certain characteristics like stimulating immune responses. They are also able to carry molecules for long distances, without changes in the concentration and integrity of the molecule. Bacteria originally secrete membrane vesicles for gene transfer, excretion, cell to cell interaction, pathogenesis, and protection against phages. These functions are unique and have several innovative applications in the pharmaceutical industry that have attracted both scientific and commercial interest.This led to the development of efficient methods to artificially stimulate vesicle production, purification, and manipulation in the lab at nanoscales. Also, for specific applications, engineering methods to impart pathogen antigens against specific diseases or customization as cargo vehicles to deliver payloads to specific cells have been reported. Many applications of bacteria membrane vesicles are in cancer drugs, vaccines, and adjuvant development with several candidates in clinical trials showing promising results. Despite this, applications in therapy and commercialization stay timid probably due to some challenges one of which is the poor understanding of biogenesis mechanisms. Nevertheless, so far, bacterial membrane vesicles seem to be a reliable and cost-efficient technology with several therapeutic applications. Research toward characterizing more membrane vesicles, genetic engineering, and nanotechnology will enable the scope of applications to widen. This might include solutions to other currently faced medical and healthcare-related challenges.
Collapse
Affiliation(s)
- PınarAytar Çelik
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir 26110, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Burak Derkuş
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| | - Kübra Erdoğan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Enuh Blaise Manga
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Yalın Yıldırım
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Ahmet Çabuk
- Department of Biology, Faculty of Science and Letter, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
49
|
Qiao L, Rao Y, Zhu K, Rao X, Zhou R. Engineered Remolding and Application of Bacterial Membrane Vesicles. Front Microbiol 2021; 12:729369. [PMID: 34690971 PMCID: PMC8532528 DOI: 10.3389/fmicb.2021.729369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are produced by both Gram-positive and Gram-negative bacteria during growth in vitro and in vivo. MVs are nanoscale vesicular structures with diameters ranging from 20 to 400 nm. MVs incorporate bacterial lipids, proteins, and often nucleic acids, and can effectively stimulate host immune response against bacterial infections. As vaccine candidates and drug delivery systems, MVs possess high biosafety owing to the lack of self-replication ability. However, wild-type bacterial strains have poor MV yield, and MVs from the wild-type strains may be harmful due to the carriage of toxic components, such as lipopolysaccharides, hemolysins, enzymes, etc. In this review, we summarize the genetic modification of vesicle-producing bacteria to reduce MV toxicity, enhance vesicle immunogenicity, and increase vesicle production. The engineered MVs exhibit broad applications in vaccine designs, vaccine delivery vesicles, and drug delivery systems.
Collapse
Affiliation(s)
- Li Qiao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yifan Rao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Keting Zhu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Zhu C, Ji Z, Ma J, Ding Z, Shen J, Wang Q. Recent Advances of Nanotechnology-Facilitated Bacteria-Based Drug and Gene Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:940. [PMID: 34202452 PMCID: PMC8308943 DOI: 10.3390/pharmaceutics13070940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.
Collapse
Affiliation(s)
- Chaojie Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiheng Ji
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junkai Ma
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijie Ding
- College of Letters & Science, University of California, Berkeley, CA 94704, USA;
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| |
Collapse
|