1
|
Xue B. Efficacy and Cellular Mechanism of Biomimetic Marine Adhesive Protein-Based Coating Against Skin Photoaging. Adv Healthc Mater 2025:e2402019. [PMID: 39901626 DOI: 10.1002/adhm.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Indexed: 02/05/2025]
Abstract
Skin photoaging is a problem worldwide, clinically often accompanied by collagen decline, increased wrinkles, loss of skin elasticity, structurally weakened skin, and other complications, which urgently demand effective treatment strategies. The biosafety and efficacy of single-function therapies for repairing skin photoaging are still challenging for clinical medicine today. At present, numerous studies report that the wet adhesive proteins driven from marine organisms play a critical role in the biomedical material field, particularly in aquatic environments. In this study, a natural recombinant protein-based coating from scallop byssal protein is prepared to investigate the efficacy and cellular mechanism in accelerating the repair of UVB-induced photoaging in a mouse model. In vitro experiments demonstrate the safety of the coating and its efficacy in enhancing cell adhesion, spreading, proliferation, and migration. Additionally, the coating effectively scavenges reactive oxygen species, promotes the expression of cell adhesion molecules and anti-apoptotic proteins, and inhibits inflammatory responses. In animal tests, the coating exhibited remarkable adsorption properties, showing significant potential for in situ regenerative therapy, as evidenced by its ability to protect against UVB-induced skin photoaging and oxidative stress. These findings suggest that Sbp9Δ coating provides a simple, safe, and innovative strategy for treating skin photoaging.
Collapse
Affiliation(s)
- Bo Xue
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| |
Collapse
|
2
|
Jo S, Pearson E, Yoon D, Kim J, Park WM. Self-Assembly of Microstructured Protein Coatings with Programmable Functionality for Fluorescent Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63284-63294. [PMID: 39501757 PMCID: PMC11583973 DOI: 10.1021/acsami.4c14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Proteins, as genetically programmable functional macromolecules, hold immense potential as biocompatible self-assembling building blocks, owing to their versatility in building coating materials and programming their functionality genetically. In this study, we demonstrate a modular self-assembly of protein coatings that are genetically programmable for a biosensor application. We designed and produced recombinant fusion protein building blocks to form microstructured coatings on diverse substrates, such as glass or polymers, through thermally triggered liquid-liquid phase separation and an orthogonal high-affinity coiled-coil interaction. We incorporated fluorescence proteins into coatings and controlled the protein density to enable fluorescence imaging and quantification in a low-resource setting. Then, we created a coating for a calcium biosensor using a genetically engineered calcium indicator protein. This protein coating served as the foundation for our smartphone-based fluorescent biosensor, which successfully measured free calcium concentrations in the millimolar range at which extracellular calcium homeostasis is maintained. Using this fluorescent biosensor, we were able to detect abnormal physiological conditions, such as mild or moderate hypercalcemia. We envision that this modular and genetically programmable functional protein coating platform could be extended to the development of highly accessible, low-cost fluorescent biosensors for a variety of targets.
Collapse
Affiliation(s)
- Suna Jo
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| | - Erin Pearson
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| | - Donghoon Yoon
- Division
of Hematology Oncology in the Department of Internal Medicine, College
of Medicine, University of Arkansas for
Medical Science, 4301 W Markham St., Little Rock, Arkansas 72205, United States
| | - Jungkwun Kim
- Department
of Electrical Engineering, University of
North Texas, 3940 N. Elm Street Ste. E255C, Denton, Texas 76207, United States
| | - Won Min Park
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Qu L, Sun Y, Zhao C, Elphick MR, Wang Q. Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China. BIOLOGY 2024; 13:537. [PMID: 39056729 PMCID: PMC11273428 DOI: 10.3390/biology13070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Starfish are keystone species as predators in benthic ecosystems, but when population outbreaks occur, this can have devastating consequences ecologically. Furthermore, starfish outbreaks and invasions can have adverse impact economically by impacting shellfish aquaculture. For example, an infestation of starfish in Qingdao led to a 50% reduction in sea cucumber production and an 80% reduction in scallop production, resulting in an economic loss of approximately RMB 100 million to oyster and other shellfish industries. Addressing the imperative need to proactively mitigate starfish invasions requires comprehensive research on their behavior and the underlying mechanisms of outbreaks. This review scrutinizes the historical patterns of outbreaks among diverse starfish species across various regions, delineates the factors contributing to the proliferation of Asterias amurensis in Chinese waters, articulates preventive and remedial strategies, and outlines the potential for the sustainable utilization of starfish.
Collapse
Affiliation(s)
- Liang Qu
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (L.Q.); (Y.S.)
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian 116023, China
- Dalian Jinshiwan Laboratory, Dalian 116034, China
| | - Yongxin Sun
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (L.Q.); (Y.S.)
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian 116023, China
- Dalian Jinshiwan Laboratory, Dalian 116034, China
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China;
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Qingzhi Wang
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (L.Q.); (Y.S.)
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian 116023, China
- Dalian Jinshiwan Laboratory, Dalian 116034, China
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
4
|
Wang L, Xue B, Zhang X, Gao Y, Xu P, Dong B, Zhang L, Zhang L, Li L, Liu W. Extracellular Matrix-Mimetic Intrinsic Versatile Coating Derived from Marine Adhesive Protein Promotes Diabetic Wound Healing through Regulating the Microenvironment. ACS NANO 2024; 18:14726-14741. [PMID: 38778025 DOI: 10.1021/acsnano.4c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The management of diabetic wound healing remains a severe clinical challenge due to the complicated wound microenvironments, including abnormal immune regulation, excessive reactive oxygen species (ROS), and repeated bacterial infections. Herein, we report an extracellular matrix (ECM)-mimetic coating derived from scallop byssal protein (Sbp9Δ), which can be assembled in situ within 30 min under the trigger of Ca2+ driven by strong coordination interaction. The biocompatible Sbp9Δ coating and genetically programmable LL37-fused coating exhibit outstanding antioxidant, antibacterial, and immune regulatory properties in vitro. Proof-of-concept applications demonstrate that the coating can reliably promote wound healing in animal models, including diabetic mice and rabbits, ex vivo human skins, and Staphylococcus aureus-infected diabetic mice. In-depth mechanism investigation indicates that improved wound microenvironments accelerated wound repair, including alleviated bacterial infection, lessened inflammation, appearance of abundant M2-type macrophages, removal of ROS, promoted angiogenesis, and re-epithelialization. Collectively, our investigation provides an in situ, convenient, and effective approach for diabetic wound repair.
Collapse
Affiliation(s)
- Lulu Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Xue
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yahui Gao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Pingping Xu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Lei Zhang
- Qingdao Endocrine & Diabetes Hospital, Qingdao 266000, China
| | - Lin Li
- Qingdao Haici Medical Group, Qingdao 266033, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Li X, Li S, Cheng J, Zhang Y, Zhan A. Deciphering protein-mediated underwater adhesion in an invasive biofouling ascidian: Discovery, validation, and functional mechanism of an interfacial protein. Acta Biomater 2024; 181:146-160. [PMID: 38679406 DOI: 10.1016/j.actbio.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
6
|
Tilbury MA, Tran TQ, Shingare D, Lefevre M, Power AM, Leclère P, Wall JG. Self-assembly of a barnacle cement protein into intertwined amyloid fibres and determination of their adhesive and viscoelastic properties. J R Soc Interface 2023; 20:20230332. [PMID: 37553991 PMCID: PMC10410215 DOI: 10.1098/rsif.2023.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The stalked barnacle Pollicipes pollicipes uses a multi-protein cement to adhere to highly varied substrates in marine environments. We investigated the morphology and adhesiveness of a component 19 kDa protein in barnacle cement gland- and seawater-like conditions, using transmission electron microscopy and state-of-the art scanning probe techniques. The protein formed amyloid fibres after 5 days in gland-like but not seawater conditions. After 7-11 days, the fibres self-assembled under gland-like conditions into large intertwined fibrils of up to 10 µm in length and 200 nm in height, with a distinctive twisting of fibrils evident after 11 days. Atomic force microscopy (AFM)-nanodynamic mechanical analysis of the protein in wet conditions determined E' (elasticity), E'' (viscosity) and tan δ values of 2.8 MPa, 1.2 MPa and 0.37, respectively, indicating that the protein is a soft and viscoelastic material, while the adhesiveness of the unassembled protein and assembled fibres, measured using peak force quantitative nanomechanical mapping, was comparable to that of the commercial adhesive Cell-Tak™. The study provides a comprehensive insight into the nanomechanical and viscoelastic properties of the barnacle cement protein and its self-assembled fibres under native-like conditions and may have application in the design of amyloid fibril-based biomaterials or bioadhesives.
Collapse
Affiliation(s)
- Maura A. Tilbury
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Thi Quynh Tran
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - Dilip Shingare
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Mathilde Lefevre
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Philippe Leclère
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - J. Gerard Wall
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Glycoproteins Involved in Sea Urchin Temporary Adhesion. Mar Drugs 2023; 21:md21030145. [PMID: 36976195 PMCID: PMC10057474 DOI: 10.3390/md21030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Biomedical adhesives, despite having been used increasingly in recent years, still face a major technological challenge: strong adhesion in wet environments. In this context, biological adhesives secreted by marine invertebrates have appealing characteristics to incorporate into new underwater biomimetic adhesives: water resistance, nontoxicity and biodegradability. Little is still known about temporary adhesion. Recently, a transcriptomic differential analysis of sea urchin Paracentrotus lividus tube feet pinpointed 16 adhesive/cohesive protein candidates. In addition, it has been demonstrated that the adhesive secreted by this species is composed of high molecular weight proteins associated with N-Acetylglucosamine in a specific chitobiose arrangement. As a follow-up, we aimed to investigate which of these adhesive/cohesive protein candidates were glycosylated through lectin pulldowns, protein identification by mass spectroscopy and in silico characterization. We demonstrate that at least five of the previously identified protein adhesive/cohesive candidates are glycoproteins. We also report the involvement of a third Nectin variant, the first adhesion-related protein to be identified in P. lividus. By providing a deeper characterization of these adhesive/cohesive glycoproteins, this work advances our understanding of the key features that should be replicated in future sea urchin-inspired bioadhesives.
Collapse
|
8
|
The Involvement of Cell-Type-Specific Glycans in Hydra Temporary Adhesion Revealed by a Lectin Screen. Biomimetics (Basel) 2022; 7:biomimetics7040166. [PMID: 36278723 PMCID: PMC9589958 DOI: 10.3390/biomimetics7040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hydra is a freshwater solitary polyp, capable of temporary adhesion to underwater surfaces. The reversible attachment is based on an adhesive material that is secreted from its basal disc cells and left behind on the substrate as a footprint. Despite Hydra constituting a standard model system in stem cell biology and tissue regeneration, few studies have addressed its bioadhesion. This project aimed to characterize the glycan composition of the Hydra adhesive, using a set of 23 commercially available lectins to label Hydra cells and footprints. The results indicated the presence of N-acetylglucosamine, N-acetylgalactosamine, fucose, and mannose in the adhesive material. The labeling revealed a meshwork-like substructure in the footprints, implying that the adhesive is mainly formed by fibers. Furthermore, lectins might serve as a marker for Hydra cells and structures, e.g., many labeled as glycan-rich nematocytes. Additionally, some unexpected patterns were uncovered, such as structures associated with radial muscle fibers and endodermal gland cells in the hypostome of developing buds.
Collapse
|
9
|
Algrain M, Hennebert E, Bertemes P, Wattiez R, Flammang P, Lengerer B. In the footsteps of sea stars: deciphering the catalogue of proteins involved in underwater temporary adhesion. Open Biol 2022; 12:220103. [PMID: 35975651 PMCID: PMC9382459 DOI: 10.1098/rsob.220103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sea stars adhere strongly but temporarily to underwater substrata via the secretion of a blend of proteins, forming an adhesive footprint that they leave on the surface after detachment. Their tube feet enclose a duo-gland adhesive system comprising two types of adhesive cells, contributing different layers of the footprint and de-adhesive cells. In this study, we characterized the catalogue of sea star footprint proteins (Sfps) in the species Asterias rubens to gain insights in their potential function. We identified 16 Sfps and mapped their expression to type 1 and/or type 2 adhesive cells or to de-adhesive cells by double fluorescent in situ hybridization. Based on their cellular expression pattern and their conserved functional domains, we propose that the identified Sfps serve different functions during attachment, with two Sfps coupling to the surface, six providing cohesive strength and the rest forming a binding matrix. Immunolabelling of footprints with antibodies directed against one protein of each category confirmed these roles. A de-adhesive gland cell-specific astacin-like proteinase presumably weakens the bond between the adhesive material and the tube foot surface during detachment. Overall, we provide a model for temporary adhesion in sea stars, including a comprehensive list of the proteins involved.
Collapse
Affiliation(s)
- Morgane Algrain
- Laboratory of Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons 7000, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons 7000, Belgium
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Technikerstr. 25, Innsbruck 6020, Austria
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons 7000, Belgium
| | - Patrick Flammang
- Laboratory of Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Technikerstr. 25, Innsbruck 6020, Austria
| |
Collapse
|
10
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
11
|
Li Z, Li Y, Lin X, Cui Y, Wang T, Dong J, Lu Y. Supramolecular protein assembly in cell-free protein synthesis system. BIORESOUR BIOPROCESS 2022; 9:28. [PMID: 38647573 PMCID: PMC10991650 DOI: 10.1186/s40643-022-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Protein-based biomaterials have the characteristics of stability and biocompatibility. Based on these advantages, various bionic materials have been manufactured and used in different fields. However, current protein-based biomaterials generally need to form monomers in cells and be purified before being assembled in vitro. The preparation process takes a long time, and the complex cellular environment is challenging to be optimized for producing the target protein product. Here this study proposed technology for in situ synthesis and assembly of the target protein, namely the cell-free protein synthesis (CFPS), which allowed to shorten the synthesis time and increase the flexibility of adding or removing natural or synthetic components. In this study, successful expression and self-assembly of the dihedral symmetric proteins proved the applicability of the CFPS system for biomaterials production. Furthermore, the fusion of different functional proteins to these six scaffold proteins could form active polymers in the CFPS system. Given the flexibility, CFPS is expected to become a powerful tool as the prototyping and manufacturing technology for protein-based biomaterials in the future.
Collapse
Affiliation(s)
- Zhixia Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuting Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuntao Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Qiu J, Huang J, Zhu X, Min Y, Qi D, Chen T. Facile one-step fabrication of DMAP-functionalized catalytic nanoreactors by polymerization-induced self-assembly in water. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
14
|
Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact Mater 2021; 10:504-514. [PMID: 34901563 PMCID: PMC8637015 DOI: 10.1016/j.bioactmat.2021.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant biomaterials have attracted much attention in various biomedical fields because of their effective inhibition and elimination of reactive oxygen species (ROS) in pathological tissues. However, the difficulty in ensuring biocompatibility, biodegradability and bioavailability of antioxidant materials has limited their further development. Novel bioavailable antioxidant materials that are derived from natural resources are urgently needed. Here, an integrated multi-omics method was applied to fabricate antioxidant biomaterials. A key cysteine-rich thrombospondin-1 type I repeat-like (TSRL) protein was efficiently discovered from among 1262 adhesive components and then used to create a recombinant protein with a yield of 500 mg L-1. The biocompatible TSRL protein was able to self-assemble into either a water-resistant coating through Ca2+-mediated coordination or redox-responsive hydrogels with tunable physical properties. The TSRL-based hydrogels showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione (GSH) and ascorbic acid (Aa) and protected cells against external oxidative stress significantly more effectively. When topically applied to mice skin, TSRL alleviated epidermal hyperplasia and suppressed the degradation of collagen and elastic fibers caused by ultraviolet radiation B (UVB) irradiation, confirming that it enhanced antioxidant activity in vivo. This is the first study to successfully characterize natural antioxidant biomaterials created from marine invertebrate adhesives, and the findings indicate the excellent prospects of these biomaterials for great applications in tissue regeneration and cosmeceuticals.
Collapse
|
15
|
(Un)expected Similarity of the Temporary Adhesive Systems of Marine, Brackish, and Freshwater Flatworms. Int J Mol Sci 2021; 22:ijms222212228. [PMID: 34830109 PMCID: PMC8621496 DOI: 10.3390/ijms222212228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Many free-living flatworms have evolved a temporary adhesion system, which allows them to quickly attach to and release from diverse substrates. In the marine Macrostomum lignano, the morphology of the adhesive system and the adhesion-related proteins have been characterised. However, little is known about how temporary adhesion is performed in other aquatic environments. Here, we performed a 3D reconstruction of the M. lignano adhesive organ and compared it to the morphology of five selected Macrostomum, representing two marine, one brackish, and two freshwater species. We compared the protein domains of the two adhesive proteins, as well as an anchor cell-specific intermediate filament. We analysed the gene expression of these proteins by in situ hybridisation and performed functional knockdowns with RNA interference. Remarkably, there are almost no differences in terms of morphology, protein regions, and gene expression based on marine, brackish, and freshwater habitats. This implies that glue components produced by macrostomids are conserved among species, and this set of two-component glue functions from low to high salinity. These findings could contribute to the development of novel reversible biomimetic glues that work in all wet environments and could have applications in drug delivery systems, tissue adhesives, or wound dressings.
Collapse
|
16
|
Lefevre M, Ederth T, Masai T, Wattiez R, Leclère P, Flammang P, Hennebert E. Disentangling the Roles of Functional Domains in the Aggregation and Adsorption of the Multimodular Sea Star Adhesive Protein Sfp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:724-735. [PMID: 34528162 DOI: 10.1007/s10126-021-10059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Sea stars can adhere to various underwater substrata using an adhesive secretion of which Sfp1 is a major component. Sfp1 is a multimodular protein composed of four subunits (Sfp1 Alpha, Beta, Delta, and Gamma) displaying different functional domains. We recombinantly produced two fragments of Sfp1 comprising most of its functional domains: the C-terminal part of the Beta subunit (rSfp1 Beta C-term) and the Delta subunit (rSfp1 Delta). Surface plasmon resonance analyses of protein adsorption onto different model surfaces showed that rSfp1 Beta C-term exhibits a significantly higher adsorption than the fibrinogen control on hydrophobic, hydrophilic protein-resistant, and charged self-assembled monolayers, while rSfp1 Delta adsorbed more on negatively charged and on protein-resistant surfaces compared to fibrinogen. Truncated recombinant rSfp1 Beta C-term proteins were produced in order to investigate the role of the different functional domains in the adsorption of this protein. The analysis of their adsorption capacities on glass showed that two mechanisms are involved in rSfp1 Beta C-term adsorption: (1) one mediated by the EGF-like domain and involving Ca2+ and Mg2+ ions, and (2) one mediated by the sequence of Sfp1 Beta with no homology with known functional domain in databases, in the presence of Na+, Ca2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Mathilde Lefevre
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials, University of Mons, 7000, Mons, Belgium
| | - Thomas Ederth
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Thibault Masai
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, 7000, Mons, Belgium
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials, University of Mons, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 7000, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium.
| |
Collapse
|
17
|
Practical Euthanasia Method for Common Sea Stars ( Asterias rubens) That Allows for High-Quality RNA Sampling. Animals (Basel) 2021; 11:ani11071847. [PMID: 34206249 PMCID: PMC8300397 DOI: 10.3390/ani11071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sea stars in research are often lethally sampled without available methodology to render them insensible prior to sampling due to concerns over sufficient sample quality for applied molecular techniques. The objectives of this study were to describe an inexpensive and effective two-step euthanasia method for adult common sea stars (Asterias rubens) and to demonstrate that high-quality RNA samples for further use in downstream molecular analyses can be obtained from pyloric ceca of MgCl2-immersed sea stars. Adult common sea stars (n = 15) were immersed in a 75 g/L magnesium chloride solution until they were no longer reactive to having their oral surface tapped with forceps (mean: 4 min, range 2-7 min), left immersed for an additional minute, and then sampled with sharp scissors. RNA from pyloric ceca (n = 10) was isolated using a liquid-liquid method, then samples were treated with DNase and analyzed for evaluation of RNA integrity number (RIN) for assessment of the quantity and purity of intact RNA. Aversive reactions to magnesium chloride solution were not observed and no sea stars regained spontaneous movement or reacted to sampling. The calculated RIN ranged from 7.3-9.8, demonstrating that the combination of animal welfare via the use of anesthesia and sampling for advanced molecular techniques is possible using this low-cost technique.
Collapse
|
18
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|