1
|
Jiang C, Miao T, Xing X, Schilling KJ, Lenhard N, Wang L, McDowell S, Nilsson BL, Wang H, Zhang X. Masquelet Inspired in Vivo Engineered Extracellular Matrix as Functional Periosteum for Bone Defect Repair and Reconstruction. Adv Healthc Mater 2025:e2404975. [PMID: 39840608 DOI: 10.1002/adhm.202404975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects. The approach involved 3D printing of polylactic acid (PLA) template with desired pattern/architecture, followed by subcutaneous implantation of the template to form tissue, and depolymerization and decellularization to generate dECM with interconnected channels. The dECM matrices produces from the same mice (autologous) or from different mice (allogenic) are used as a functional periosteum for repair of structural bone allograft in a murine segmental bone defect model. This study shows that autologous dECM performed better than allogenic dECM, further permitting local delivery of low dose BMP-2 to enhance allograft incorporation. The success of this current approach can establish a new line of versatile, patient-specific, and periosteum-like autologous dECM for bone regeneration, offering personalized therapeutics to patients with impaired healing.
Collapse
Affiliation(s)
- Chen Jiang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Tianfeng Miao
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Xiaojie Xing
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Kevin J Schilling
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Nicholas Lenhard
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Susan McDowell
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
2
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
3
|
Hui H, Song Y, Liu H, Fan J, Sha Z, Li H, Lu J, Zhang Q, Fei X, Zhu M. Integrating molecular-caged nano-hydroxyapatite into post-crosslinked PVA nanofibers for artificial periosteum. BIOMATERIALS ADVANCES 2024; 165:214001. [PMID: 39216317 DOI: 10.1016/j.bioadv.2024.214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.
Collapse
Affiliation(s)
- Hu Hui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongchuang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Zhou Z, Jin Z, Tian Y, Huangfu C, Fan Z, Liu D. CDK14 is regulated by IGF2BP2 and involved in osteogenic differentiation via Wnt/β-catenin signaling pathway in vitro. Life Sci 2024; 358:123148. [PMID: 39447733 DOI: 10.1016/j.lfs.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
AIMS Cyclin-dependent kinase (CDK) family proteins involve in various cellular processes via regulating the cell cycle; however, their expression during osteogenic differentiation and postmenopausal osteoporosis remains poorly understood. MAIN METHODS Using bioinformatics, we screened for CDK14 bound to Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and explored its expression in vitro with time-gradient model and in a mouse model of postmenopausal osteoporosis, building on prior research. Subsequently, we investigated its effect on osteoblast proliferation, cell cycle dynamics, and osteogenic differentiation by administering CDK14 siRNA and the covalent inhibitor FMF-04-159-2. Furthermore, we examined the interaction between IGF2BP2 and CDK14. Finally, we validated the regulatory role of CDK14 on the Wnt/β-catenin pathway. KEY FINDINGS Our findings demonstrate a time-dependent CDK14 expression patterns during osteogenic differentiation of MC3T3-E1 cell line, with an initial increase followed by gradual decline over time. Notably, CDK14 expression exhibited significant reduction in bone tissue of postmenopausal osteoporosis mouse model. CDK14 inhibition altered osteoblast cell cycle dynamics, significantly reduced cellular proliferation capacity, and impaired osteogenic differentiation ability. IGF2BP2 interacted with CDK14 mRNA, and stabilizing mRNA's structure and inhibiting its degradation. Additionally, CDK14 facilitated Low-density lipoprotein receptor-related protein 6 (LRP6) and Glycogen synthase kinase 3β (GSK3β) phosphorylation, thus regulating β-catenin levels. SIGNIFICANCE These findings provide further insight into the molecular mechanisms governing osteoblast proliferation, differentiation and osteoporosis.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zhuoru Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chenghao Huangfu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zheng Fan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Kong L, Zhao Y, Xiong Y, Chen J, Wang S, Yan Z, Shi H, Liu Z, Wang X. Multiscale engineered artificial compact bone via bidirectional freeze-driven lamellated organization of mineralized collagen microfibrils. Bioact Mater 2024; 40:168-181. [PMID: 38910968 PMCID: PMC11192986 DOI: 10.1016/j.bioactmat.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 06/25/2024] Open
Abstract
Bone, renowned for its elegant hierarchical structure and unique mechanical properties, serves as a constant source of inspiration for the development of synthetic materials. However, achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge. In this study, we employed a cascade of continuous fabrication processes, including biomimetic mineralization of collagen, bidirectional freeze-casting, and pressure-driven fusion, to successfully fabricate a macroscopic bulk material known as artificial compact bone (ACB). The ACB material closely replicates the composition, hierarchical structures, and mechanical properties of natural bone. It demonstrates a lamellated alignment of mineralized collagen (MC) microfibrils, similar to those found in natural bone. Moreover, the ACB exhibits a similar high mineral content (70.9 %) and density (2.2 g/cm3) as natural cortical bone, leading to exceptional mechanical properties such as high stiffness, hardness, and flexural strength that are comparable to those of natural bone. Importantly, the ACB also demonstrates excellent mechanical properties in wet, outstanding biocompatibility, and osteogenic properties in vivo, rendering it suitable for a broad spectrum of biomedical applications, including orthopedic, stomatological, and craniofacial surgeries.
Collapse
Affiliation(s)
- Lingwenyao Kong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi'an, 710077, China
| | - Yang Xiong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziming Yan
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibin Shi
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Xu Y, Xu C, Song H, Feng X, Ma L, Zhang X, Li G, Mu C, Tan L, Zhang Z, Liu Z, Luo Z, Yang C. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnology 2024; 22:250. [PMID: 38750519 PMCID: PMC11094931 DOI: 10.1186/s12951-024-02430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Huan Song
- Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, 430033, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Clinical Medicine, Department of Orthopedics, Chengdu Medical College, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
8
|
Wang K, Zhou M, Zhang Y, Jin Y, Xue Y, Mao D, Rui Y. Fibromodulin facilitates the osteogenic effect of Masquelet's induced membrane by inhibiting the TGF-β/SMAD signaling pathway. Biomater Sci 2024; 12:1898-1913. [PMID: 38426394 DOI: 10.1039/d3bm01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Masquelet's induced membrane (IM) technique is a promising treatment strategy for the repair of substantial bone defects. The formation of an IM around polymethylmethacrylate bone cement plays a crucial role in this technique. Several studies have indicated that IMs have bioactivity because they contain abundant blood vessels, a variety of cells, and biological factors. The bioactivity of an IM increases during the initial stages of formation, thereby facilitating bone regeneration and remodeling. Nevertheless, the precise mechanisms underlying the enhancement of IM bioactivity and the promotion of bone regeneration necessitate further investigation. In this study, we successfully developed a Masquelet IM model of critical femur defects in rats. By employing proteomics analysis and biological detection techniques, we identified fibromodulin (FMOD) as a pivotal factor contributing to angiogenesis and the enhanced bioactivity of the IM. A significant increase in angiogenesis and the expression of bioactive factors in the IM was also observed with the upregulation of FMOD expression. Furthermore, this effect is mediated through the inhibition of the transforming growth factor beta (TGF-β)/SMAD signaling pathway. We also demonstrated that administering recombinant human FMOD enhanced osteogenesis in rat bone marrow mesenchymal stem cells and angiogenesis in human umbilical vein endothelial cells in vitro. Furthermore, the negative regulatory effect of the TGF-β signaling pathway was verified. In conclusion, this study provides a novel theoretical basis for the application of IMs in bone-defect reconstruction and explores possible new mechanisms that may play an important role in promoting the bioactivity and osteogenic potential of IMs.
Collapse
Affiliation(s)
- Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Ming Zhou
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| |
Collapse
|
9
|
Ke Re Mu ALM, Liang ZL, Chen L, Tu Xun AKBE, A Bu Li Ke Mu MMTAL, Wu YQ. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomed Pharmacother 2024; 172:116228. [PMID: 38320333 DOI: 10.1016/j.biopha.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). METHODS PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone healing. Evaluation of viable bacteria was performed. The cytocompatibility of 3D-printed composite scaffolds in vitro was detected using human bone marrow mesenchymal stem cells (BMSCs). Long-term safety of the scaffolds in rabbits was evaluated. RESULTS The linezolid-loaded PLGA-HA scaffolds exhibited a sustained release of linezolid and showed significant antibacterial effects. In the IBD rabbit models implanted with the scaffolds, the linezolid-loaded PLGA-HA scaffolds promoted bone healing and attenuated bone infection. The PLGA-HA scaffolds carrying linezolid upregulated the expression of osteogenic genes including collagen I, runt-related transcription factor 2, and osteocalcin. The linezolid-loaded PLGA-HA scaffolds promoted the proliferation and osteogenesis of BMSCs in vitro via the PI3K/AKT pathway. Moreover, the rabbits implanted with the linezolid-loaded scaffolds showed normal biochemical profiles and normal histology, which suggested the safety of the linezolid-loaded scaffolds. CONCLUSION Overall, the linezolid-loaded PLGA-HA scaffolds fabricated by 3D printing exerts significant bone repair and anti-infection effects.
Collapse
Affiliation(s)
- A Li Mu Ke Re Mu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Zhi Lin Liang
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Linlin Chen
- Nanjing Genebios Biotechnology Co., Ltd., Nanjing 21100, China
| | - Ai Ke Bai Er Tu Xun
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | | | - Yuan Quan Wu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China.
| |
Collapse
|
10
|
Wang A, Ma X, Bian J, Jiao Z, Zhu Q, Wang P, Zhao Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front Bioeng Biotechnol 2024; 12:1333566. [PMID: 38328443 PMCID: PMC10847561 DOI: 10.3389/fbioe.2024.1333566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.
Collapse
Affiliation(s)
- Aoao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Xinbo Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jiaqi Bian
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | | | - Qiuyi Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Li QL, Wu YX, Zhang YX, Mao J, Zhang ZX. Enhancing osteogenic differentiation of MC3T3-E1 cells during inflammation using UPPE/β-TCP/TTC composites via the Wnt/β-catenin pathway. RSC Adv 2024; 14:1527-1537. [PMID: 38179095 PMCID: PMC10763654 DOI: 10.1039/d3ra05529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis can lead to defects in the alveolar bone, thus increasing the demand for dependable biomaterials to repair these defects. This study aims to examine the pro-osteogenic and anti-bacterial properties of UPPE/β-TCP/TTC composites (composed of unsaturated polyphosphoester [UPPE], β-tricalcium phosphate [β-TCP], and tetracycline [TTC]) under an inflammatory condition. The morphology of MC3T3-E1 cells on the composite was examined using scanning electron microscopy. The toxicity of the composite to MC3T3-E1 cells was assessed using the Alamar-blue assay. The pro-osteogenic potential of the composite was assessed through ALP staining, ARS staining, RT-PCR, and WB. The antimicrobial properties of the composite were assessed using the zone inhibition assay. The results suggest that: (1) MC3T3-E1 cells exhibited stable adhesion to the surfaces of all four composite groups; (2) the UPPE/β-TCP/TTC composite demonstrated significantly lower toxicity to MC3T3-E1 cells; and (3) the UPPE/β-TCP/TTC composite had the most pronounced pro-osteogenic effect on MC3T3-E1 cells by activating the WNT/β-catenin pathway and displaying superior antibacterial properties. UPPE/β-TCP/TTC, as a biocomposite, has been shown to possess antibacterial properties and exhibit excellent potential in facilitating osteogenic differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Qi-Lin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan 430022 China
| | - Ya-Xin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan 430022 China
| | - Yu-Xiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan 430022 China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan 430022 China
| | - Zhi-Xing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan 430022 China
| |
Collapse
|
12
|
Fan L, Ma X, Liu B, Yang Y, Yang Y, Ren T, Li Y. Antioxidant-Engineered Milk-Derived Extracellular Vesicles for Accelerating Wound Healing via Regulation of the PI3K-AKT Signaling Pathway. Adv Healthc Mater 2023; 12:e2301865. [PMID: 37660257 DOI: 10.1002/adhm.202301865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Indexed: 09/04/2023]
Abstract
Inspired by the experience of relieving inflammation in infants with milk, antioxidant-engineered milk-derived extracellular vesicles (MEVs) are developed to evaluate their potential for accelerating wound healing. In this work, MEVs with polydopamines (PDA) are engineered using the co-extrusion method. Subsequently, the authors incorporated them into a Schiff-based crosslink hydrogel, forming a skin dosage form that could facilitate the wound healing process. The antioxidant properties of PDA assist in the anti-inflammatory function of engineered MEVs, while the gel provides better skin residency. The PDA@MEVs+GEL formulation exhibits excellent biocompatibility, pro-angiogenic capacity, and antioxidant ability in vitro. Furthermore, in vivo experiments demonstrate its efficacy in wound repair and inflammation inhibition. Mechanistically, PDA@MEVs+GEL simultaneously promotes the growth, migration, and anti-inflammation of 3T3 cells by activating PI3K-AKT pathway. Moreover, PDA@MEVs+GEL exhibits enhanced functionality in promoting wound healing in vivo, attributed to its ability to inhibit inflammation, stimulate angiogenesis, and promote collagen synthesis. In conclusion, this study delves into the mechanism of MEVs and underscores the improved efficacy of engineered extracellular vesicles. Additionally, the feasibility and prospect of engineered MEVs in treating skin wounds are verified, suggesting that antioxidant-engineered MEVs could be a promising therapeutic agent for wound healing applications.
Collapse
Affiliation(s)
- Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yushan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
13
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
14
|
Sun H, Shang Y, Guo J, Maihemuti A, Shen S, Shi Y, Liu H, Che J, Jiang Q. Artificial Periosteum with Oriented Surface Nanotopography and High Tissue Adherent Property. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45549-45560. [PMID: 37747777 DOI: 10.1021/acsami.3c07561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Massive periosteal defects often significantly impair bone regeneration and repair, which have become a major clinical challenge. Unfortunately, current engineered periosteal materials can hardly currently focus on achieving high tissue adhesion property, being suitable for cell growth, and inducing cell orientation concurrently to meet the properties of nature periosteum. Additionally, the preparation of oriented surface nanotopography often relies on professional equipment. In this study, inspired by the oriented collagen structure of nature periosteum, we present a composite artificial periosteum with a layer of oriented nanotopography surface containing carbon nanotubes (CNTs), cross-linked with adhesive polydopamine (PDA) hydrogel on both terminals. An oriented surface structure that can simulate the oriented alignment of periosteal collagen fibers can be quickly and conveniently obtained via a simple stretching of the membrane in a water bath. With the help of CNTs, our artificial periosteum exhibits sufficient mechanical strength and desired oriented nanotopological structure surface, which further induces the directional arrangement of human bone marrow mesenchymal stem cells (hBMSCs) on the membrane. These oriented hBMSCs express significantly higher levels of osteogenic genes and proteins, while the resultant composite periosteum can be stably immobilized in vivo in the rat model of massive calvarial defect through the PDA hydrogel, which finally shows promising bone regeneration ability. We anticipate that the developed functional artificial periosteum has great potential in biomedical applications for the treatment of composite defects of the bone and periosteum.
Collapse
Affiliation(s)
- Han Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou 213003, Jiangsu, PR China
| | - Yixuan Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Junxia Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Abudureheman Maihemuti
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Siyu Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Yong Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Hao Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| |
Collapse
|
15
|
Yang S, Chen Z, Zhuang P, Tang Y, Chen Z, Wang F, Cai Z, Wei J, Cui W. Seamlessly Adhesive Bionic Periosteum Patches Via Filling Microcracks for Defective Bone Healing. SMALL METHODS 2023; 7:e2300370. [PMID: 37356079 DOI: 10.1002/smtd.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Indexed: 06/27/2023]
Abstract
Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Pengzhen Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zehao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
16
|
Zhu G, Zhou Y, Xu Y, Wang L, Han M, Xi K, Tang J, Li Z, Kou Y, Zhou X, Feng Y, Gu Y, Chen L. Functionalized acellular periosteum guides stem cell homing to promote bone defect repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2000-2020. [PMID: 37071056 DOI: 10.1080/09205063.2023.2204779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
The periosteum plays a key role in bone tissue regeneration, especially in the promotion and protection of new bones. However, among the bone repair materials, many biomimetic artificial periosteum lack the natural periosteal structure, stem cells, and immunoregulation required for bone regeneration. In this study, we used natural periosteum to produce acellular periosteum. To retain the appropriate cell survival structure and immunomodulatory proteins, we grafted the functional polypeptide SKP on the surface collagen of the periosteum via an amide bond, providing the acellular periosteum with the ability to recruit mesenchymal stem cells. Thus, we developed a biomimetic periosteum (DP-SKP) with the ability to promote stem cell homing and immunoregulation in vivo. Compared to the blank and simple decellularized periosteum groups, DP-SKP was more conducive to stem cell adhesion, growth, and osteogenic differentiation in vitro. Additionally, compared with the other two groups, DP-SKP significantly promoted mesenchymal stem cell homing to the periosteal transplantation site, improved the bone immune microenvironment, and accelerated new lamellar bone formation in the critical size defect of rabbit skulls in vivo. Therefore, this acellular periosteum with a mesenchymal stem cell homing effect is expected to be used as an extracellular artificial periosteum in clinical practice.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Suzhou Municipal Hospital, Suzhou, China
| | - Yidi Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yichang Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Han
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jincheng Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziang Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Kou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu Feng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Romero-Torrecilla JA, Lamo-Espinosa JM, Ripalda-Cemboráin P, López-Martínez T, Abizanda G, Riera-Álvarez L, de Galarreta-Moriones SR, López-Barberena A, Rodríguez-Flórez N, Elizalde R, Jayawarna V, Valdés-Fernández J, de Anleo MEG, Childs P, de Juan-Pardo E, Salmeron-Sanchez M, Prósper F, Muiños-López E, Granero-Moltó F. An engineered periosteum for efficient delivery of rhBMP-2 and mesenchymal progenitor cells during bone regeneration. NPJ Regen Med 2023; 8:54. [PMID: 37773177 PMCID: PMC10541910 DOI: 10.1038/s41536-023-00330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 μg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.
Collapse
Affiliation(s)
- Juan Antonio Romero-Torrecilla
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - José María Lamo-Espinosa
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Purificación Ripalda-Cemboráin
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Tania López-Martínez
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Luis Riera-Álvarez
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Naiara Rodríguez-Flórez
- Tecnun-School of Engineering, Universidad de Navarra, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Reyes Elizalde
- Tecnun-School of Engineering, Universidad de Navarra, San Sebastian, Spain
| | - Vineetha Jayawarna
- Center for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - José Valdés-Fernández
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Miguel Echanove-González de Anleo
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Peter Childs
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Elena de Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Manuel Salmeron-Sanchez
- Center for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
18
|
Zhou B, Jiang X, Zhou X, Tan W, Luo H, Lei S, Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res 2023; 27:86. [PMID: 37715230 PMCID: PMC10504735 DOI: 10.1186/s40824-023-00422-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).
Collapse
Affiliation(s)
- Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
19
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
20
|
He L, Yin J, Gao X. Additive Manufacturing of Bioactive Glass and Its Polymer Composites as Bone Tissue Engineering Scaffolds: A Review. Bioengineering (Basel) 2023; 10:672. [PMID: 37370603 DOI: 10.3390/bioengineering10060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Bioactive glass (BG) and its polymer composites have demonstrated great potential as scaffolds for bone defect healing. Nonetheless, processing these materials into complex geometry to achieve either anatomy-fitting designs or the desired degradation behavior remains challenging. Additive manufacturing (AM) enables the fabrication of BG and BG/polymer objects with well-defined shapes and intricate porous structures. This work reviewed the recent advancements made in the AM of BG and BG/polymer composite scaffolds intended for bone tissue engineering. A literature search was performed using the Scopus database to include publications relevant to this topic. The properties of BG based on different inorganic glass formers, as well as BG/polymer composites, are first introduced. Melt extrusion, direct ink writing, powder bed fusion, and vat photopolymerization are AM technologies that are compatible with BG or BG/polymer processing and were reviewed in terms of their recent advances. The value of AM in the fabrication of BG or BG/polymer composites lies in its ability to produce scaffolds with patient-specific designs and the on-demand spatial distribution of biomaterials, both contributing to effective bone defect healing, as demonstrated by in vivo studies. Based on the relationships among structure, physiochemical properties, and biological function, AM-fabricated BG or BG/polymer composite scaffolds are valuable for achieving safer and more efficient bone defect healing in the future.
Collapse
Affiliation(s)
- Lizhe He
- Center for Medical and Engineering Innovation, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
21
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Li P, Zhang M, Chen Z, Tian B, Kang X. Tissue-Engineered Injectable Gelatin-Methacryloyl Hydrogel-Based Adjunctive Therapy for Intervertebral Disc Degeneration. ACS OMEGA 2023; 8:13509-13518. [PMID: 37091429 PMCID: PMC10116505 DOI: 10.1021/acsomega.3c00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Gelatin-methacryloyl (GelMA) hydrogels are photosensitive with good biocompatibility and adjustable mechanical properties. The GelMA hydrogel composite system is a prospective therapeutic material based on a tissue engineering platform for treating intervertebral disc (IVD) degeneration (IVDD). The potential application value of the GelMA hydrogel composite system in the treatment of IVDD mainly includes three aspects: first, optimization of the current clinical treatment methods, including conservative treatment and surgical treatment; second, regeneration of IVD cells to reverse or repair IVDD; and finally, IVDD instead of injury plays a biomechanical role. In this paper, we summarized and analyzed the preparation of GelMA hydrogels and their excellent biological characteristics as carriers and comprehensively demonstrated the research status and prospects of GelMA hydrogel composite systems in IVDD treatment. In addition, the challenges facing the application of GelMA hydrogel composite systems and the progress of research on new hydrogels modified by GelMA hydrogels are presented. Hopefully, this study will provide theoretical guidance for the future application of GelMA hydrogel composite systems in IVDD.
Collapse
Affiliation(s)
- Peng Li
- Department
of Hand Surgery, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Ming Zhang
- Department
of General Practice, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Zhengyu Chen
- Department
of Spine Surgery, Xianyang First People’s
Hospital, Shaanxi, 712000, P.R. China
| | - Bin Tian
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Xin Kang
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
- E-mail:
| |
Collapse
|
23
|
Liang C, Liao L, Tian W. Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules 2023; 13:673. [PMID: 37189420 PMCID: PMC10136219 DOI: 10.3390/biom13040673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The decellularized extracellular matrix (dECM) is capable of promoting stem cell proliferation, migration, adhesion, and differentiation. It is a promising biomaterial for application and clinical translation in the field of periodontal tissue engineering as it most effectively preserves the complex array of ECM components as they are in native tissue, providing ideal cues for regeneration and repair of damaged periodontal tissue. dECMs of different origins have different advantages and characteristics in promoting the regeneration of periodontal tissue. dECM can be used directly or dissolved in liquid for better flowability. Multiple ways were developed to improve the mechanical strength of dECM, such as functionalized scaffolds with cells that harvest scaffold-supported dECM through decellularization or crosslinked soluble dECM that can form injectable hydrogels for periodontal tissue repair. dECM has found recent success in many periodontal regeneration and repair therapies. This review focuses on the repairing effect of dECM in periodontal tissue engineering, with variations in cell/tissue sources, and specifically discusses the future trend of periodontal regeneration and the future role of soluble dECM in entire periodontal tissue regeneration.
Collapse
Affiliation(s)
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| |
Collapse
|
24
|
Wang X, Ma Y, Chen J, Liu Y, Liu G, Wang P, Wang B, Taketo MM, Bellido T, Tu X. A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis. Bioact Mater 2023; 21:110-128. [PMID: 36093329 PMCID: PMC9411072 DOI: 10.1016/j.bioactmat.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/β-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers β3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application. Decellularized matrix of osteocytes with dominant-active β-catenin (daCO-DM) promotes osteogenesis for regenerative repair. daCO-DM induces BMSCs to form stress fibers, conducive to cell adhesion, spreading, and differentiation towards osteoblasts. daCO-DM-induced osteoblasts have strong activity secreting dense and orderly-arranged type I collagen as host bone’s. daCO-DM induces BMSCs to express pre-osteoclastogenic cytokine RANKL and MCSF for osteoclastogenesis of marrow monocytes. daCO-DM enhances BMSCs to express angiogenic Vegfa and Angpt1, and neurogenic Ngf potentially for neurovascularization.
Collapse
Affiliation(s)
- Xiaofang Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yufei Ma
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Chen
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujiao Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guangliang Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Pengtao Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Corresponding author. Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Sun X, Yang J, Ma J, Wang T, Zhao X, Zhu D, Jin W, Zhang K, Sun X, Shen Y, Xie N, Yang F, Shang X, Li S, Zhou X, He C, Zhang D, Wang J. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Biofabrication 2023; 15. [PMID: 36716493 DOI: 10.1088/1758-5090/acb73e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The periosteum is a connective tissue membrane adhering to the surface of bone tissue that primarily provides nutrients and regulates osteogenesis during bone development and injury healing. However, building an artificial periosteum with good adhesion properties and satisfactory osteogenesis for bone defect repair remains a challenge, especially using three-dimensional (3D) bioprinting. In this study, dopamine was first grafted onto the molecular chain of gelatin usingN-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride andN-hydroxysuccinimide (NHS) to activate the carboxyl group and produce modified gelatin-dopamine (GelDA). Next, a methacrylated gelatin, methacrylated silk fibroin, GelDA, and graphene oxide nanosheet composite bioink loaded with bone marrow mesenchymal stem cells was prepared and used for bioprinting. The physicochemical properties, biocompatibility, and osteogenic roles of the bioink and 3D bioprinted artificial periosteum were then systematically evaluated. The results showed that the developed bioink showed good thermosensitivity and printability and could be used to build 3D bioprinted artificial periosteum with satisfactory cell viability and high adhesion. Finally, the 3D bioprinted artificial periosteum could effectively enhance osteogenesis bothin vitroandin vivo. Thus, the developed 3D bioprinted artificial periosteum can prompt new bone formation and provides a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Jin Yang
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xue Zhao
- Department of Radiology, Huangpu Branch of Shanghai Ninth People's Hospital, affiliated to Shanghai Jiao Tong University, No. 58 Puyu East Road, Shanghai 200011, People's Republic of China
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai 201999, People's Republic of China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xuzhou Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Neng Xie
- Shanghai Evaluation and Verification Center for Medical Devices and Cosmetics, No. 210 Nanchang Road, Shanghai 200020, People's Republic of China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China.,School of Rehabilitation Medicine, Weifang Medical University, No. 7166 Baotong West Street, Weifang 261053, Shangdong, People's Republic of China
| |
Collapse
|
26
|
A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept. Bioengineering (Basel) 2023; 10:bioengineering10020143. [PMID: 36829637 PMCID: PMC9952848 DOI: 10.3390/bioengineering10020143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The lack of viability of massive bone allografts for critical-size bone defect treatment remains a challenge in orthopedic surgery. The literature has reviewed the advantages of a multi-combined treatment with the synergy of an osteoconductive extracellular matrix (ECM), osteogenic stem cells, and growth factors (GFs). Questions are still open about the need for ECM components, the influence of the decellularization process on the latter, the related potential loss of function, and the necessity of using pre-differentiated cells. In order to fill in this gap, a bone allograft surrounded by an osteogenic membrane made of a decellularized collagen matrix from human fascia lata and seeded with periosteal mesenchymal stem cells (PMSCs) was analyzed in terms of de-/recellularization, osteogenic properties, PMSC self-differentiation, and angiogenic potential. While the decellularization processes altered the ECM content differently, the main GF content was decreased in soft tissues but relatively increased in hard bone tissues. The spontaneous osteogenic differentiation was necessarily obtained through contact with a mineralized bone matrix. Trying to deepen the knowledge on the complex matrix-cell interplay could further propel these tissue engineering concepts and lead us to provide the biological elements that allow bone integration in vivo.
Collapse
|
27
|
Liang K, Zhao C, Song C, Zhao L, Qiu P, Wang S, Zhu J, Gong Z, Liu Z, Tang R, Fang X, Zhao Y. In Situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:292-308. [PMID: 36583968 DOI: 10.1021/acsami.2c16217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A critical-sized bone defect, which cannot be repaired through self-healing, is a major challenge in clinical therapeutics. The combination of biomimetic hydrogels and nano-hydroxyapatite (nano-HAP) is a promising way to solve this problem by constructing an osteogenic microenvironment. However, it is challenging to generate nano-HAP with a similar morphology and structure to that of natural bone, which limits the improvement of bone regeneration hydrogels. Inspired by our previous works on organic-inorganic cocross-linking, here, we built a strong organic-inorganic interaction by cross-linking periosteum-decellularized extracellular matrix and calcium phosphate oligomers, which ensured the in situ mineralization of bone-like nano-HAP in hydrogels. The resulting biomimetic osteogenic hydrogel (BOH) promotes bone mineralization, construction of immune microenvironment, and angiogenesis improvement in vitro. The BOH exhibited acceleration of osteogenesis in vivo, achieving large-sized bone defect regeneration and remodeling within 8 weeks, which is superior to many previously reported hydrogels. This study demonstrates the important role of bone-like nano-HAP in osteogenesis, which deepens the understanding of the design of biomaterials for hard tissue repair. The in situ mineralization of bone-like nano-HAP emphasizes the advantages of inorganic ionic oligomers in the construction of organic-inorganic interaction, which provides an alternative method for the preparation of advanced biomimetic materials.
Collapse
Affiliation(s)
- Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenchen Zhao
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chenxin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Lan Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
28
|
Marcucio R, Miclau T, Bahney C. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. J Dent Res 2023; 102:13-20. [PMID: 36303415 PMCID: PMC9791286 DOI: 10.1177/00220345221125401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While formation and regeneration of the skeleton have been studied for a long period of time, significant scientific advances in this field continue to emerge based on an unmet clinical need to improve options to promote bone repair. In this review, we discuss the relationship between mechanisms of bone formation and bone regeneration. Data clearly show that regeneration is not simply a reinduction of the molecular and cellular programs that were used for development. Instead, the mechanical environment exerts a strong influence on the mode of repair, while during development, cell-intrinsic processes drive the mode of skeletal formation. A major advance in the field has shown that cell fate is flexible, rather than terminal, and that chondrocytes are able to differentiate into osteoblasts and other cell types during development and regeneration. This is discussed in a larger context of regeneration in vertebrates as well as the clinical implication that this shift in understanding presents.
Collapse
Affiliation(s)
- R.S. Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - T. Miclau
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - C.S. Bahney
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
29
|
Xu L, Xu S, Xiang TY, Chen LW, Zhong WX, Zhu L, Liu H, Wu L, Li WD, Wang YT, Cai BC, Yao JH, Chen R, Xin WF, Cao G, Chen ZP. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. J Control Release 2023; 353:738-751. [PMID: 36526019 DOI: 10.1016/j.jconrel.2022.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In the absence of adequate treatment, effective bone regeneration remains a great challenge. Exploring hydrogels with properties of excellent bioactivity, stability, non-immunogenicity, and commercialization is an important step to develop hydrogel-based bone regeneration materials. In this study, we engineered a self-assembled chelating peptide hydrogel loaded with an osteogenic metal ion cluster extracted from the processed pyritum decoction, including Fe2+, Cu2+, Zn2+, Mn2+, Mg2+, and Ca2+ ions, named processed pyritum hydrogel (PPH). We demonstrated that as a reservoir of beneficial metal ion clusters in bone regeneration, PPH has been shown to regulate a variety of genes in the process of bone regeneration. These genes are mainly involved in extracellular matrix synthesis, cell adhesion and migration, cytokine expression, antimicrobial and inflammation. Therefore, PPH accelerated the progress of various bone healing stages, and shortened the bone healing cycle by 4 weeks. Our investigation outcomes showed that the engineered metal ion cluster hydrogel is a novel, simple, and commercializable bone-regenerating hydrogel with potential clinical use.
Collapse
Affiliation(s)
- Liu Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Shan Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Tang Yong Xiang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Lin Wei Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Xi Zhong
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Ling Zhu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Heng Liu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Li Wu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Dong Li
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Yu Tong Wang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Bao Chang Cai
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Jun Hong Yao
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Rui Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wen Feng Xin
- College of Notoginseng Medicine and Pharmacy of Wenshan University; Wenshan 663099, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University; Hangzhou 310053, China.
| | - Zhi Peng Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China.
| |
Collapse
|
30
|
Zhang W, Sun T, Zhang J, Hu X, Yang M, Han L, Xu G, Zhao Y, Li Z. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton's jelly based on stem cell recruitment and its application in bone tissue engineering. Mater Today Bio 2022; 18:100528. [PMID: 36636638 PMCID: PMC9830312 DOI: 10.1016/j.mtbio.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The presence of periosteum can greatly affect the repair of a bone fracture. An artificial periosteum imitates the biological function of natural periosteum, which is capable of protecting and maintaining bone tissue structure and promoting bone repair. In our artificial periosteum, biocompatible methacrylate gelatin was used to provide the mechanical support of the membrane, E7 peptide added bioactivity, and Wharton's jelly provided the biological activity support of the membrane, resulting in a hydrogel membrane (G-E-W) for the chemotactic recruitment of bone marrow mesenchymal stem cells (BMSCs) and promoting cell proliferation and osteogenic differentiation. In an in vitro experiment, the G-E-W membrane recruited BMSCs and promoted cell proliferation and osteogenic differentiation. After 4 weeks and 8 weeks of implantation in a rat skull defect, the group implanted with a G-E-W membrane was superior to the blank control group and single-component membrane group in both quantity and quality of new bone. The artificial G-E-W membrane recruits BMSC chemotaxis and promotes cell proliferation and osteogenic differentiation, thereby effectively improving the repair efficiency of fractures and bone defects.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Tianze Sun
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Xiantong Hu
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Ming Yang
- Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liwei Han
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China,Corresponding author. Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China,Corresponding author. Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
31
|
Chen J, Chen J, Zhu Z, Sun T, Liu M, Lu L, Zhou C, Luo B. Drug-Loaded and Anisotropic Wood-Derived Hydrogel Periosteum with Super Antibacterial, Anti-Inflammatory, and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50485-50498. [PMID: 36331130 DOI: 10.1021/acsami.2c12147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current artificial periostea mainly focus on osteogenic activity but overlook structural and mechanical anisotropy, as well as the importance of antibacterial and anti-inflammatory properties. Here, inspired by the anisotropic structure of wood, the delignified wood (named white wood, WW) with a porous and highly oriented cellulose fiber skeleton was obtained, which was further filled with polyvinyl alcohol (PVA) hydrogel loaded with curcumin (Cur) and phytic acid (PA). The prepared wood-derived hydrogel composite membranes can not only exhibit an obvious anisotropic structure and good mechanical properties but also sustainably release loaded drugs to obtain long-term biological activities. Creatively, PA can effectively improve the bioavailability of Cur; more importantly, Cur and PA play an obvious synergistic effect in antibacterial, anti-inflammatory, and osteogenic activities. Compared with the wood-derived hydrogel composite membranes without drug loading, as well as loaded with Cur or PA only, these loaded with Cur and PA are significantly more conducive to inhibiting the growth of bacteria and inflammatory response and facilitating the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This kind of anisotropic wood-derived hydrogel composite membrane with fantastic antibacterial, anti-inflammatory, and osteogenic activities is expected to be ideal artificial periostea.
Collapse
Affiliation(s)
- Jiaqing Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Jingsheng Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Zelin Zhu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Tianyi Sun
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Mingxian Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lu Lu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Changren Zhou
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Binghong Luo
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| |
Collapse
|
32
|
Manon J, Evrard R, Maistriaux L, Fievé L, Heller U, Magnin D, Boisson J, Kadlub N, Schubert T, Lengelé B, Behets C, Cornu O. Periosteum and fascia lata: Are they so different? Front Bioeng Biotechnol 2022; 10:944828. [DOI: 10.3389/fbioe.2022.944828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human fascia lata (HFL) is used widely in reconstructive surgery in indications other than fracture repair. The goal of this study was to compare microscopic, molecular, and mechanical properties of HFL and periosteum (HP) from a bone tissue engineering perspective.Material and Methods: Cadaveric HP and HFL (N = 4 each) microscopic morphology was characterized using histology and immunohistochemistry (IHC), and the extracellular matrix (ECM) ultrastructure assessed by means of scanning electron microscopy (SEM). DNA, collagen, elastin, glycosaminoglycans, major histocompatibility complex Type 1, and bone morphogenetic protein (BMP) contents were quantified. HP (N = 6) and HFL (N = 11) were submitted to stretch tests.Results: Histology and IHC highlighted similarities (Type I collagen fibers and two-layer organization) but also differences (fiber thickness and compaction and cell type) between both tissues, as confirmed using SEM. The collagen content was statistically higher in HFL than HP (735 vs. 160.2 μg/mg dry weight, respectively, p < 0.0001). On the contrary, DNA content was lower in HFL than HP (404.75 vs. 1,102.2 μg/mg dry weight, respectively, p = 0.0032), as was the immunogenic potential (p = 0.0033). BMP-2 and BMP-7 contents did not differ between both tissues (p = 0.132 and p = 0.699, respectively). HFL supported a significantly higher tension stress than HP.Conclusion: HP and HFL display morphological differences, despite their similar molecular ECM components. The stronger stretching resistance of HFL can specifically be explained by its higher collagen content. However, HFL contains many fewer cells and is less immunogenic than HP, as latter is rich in periosteal stem cells. In conclusion, HFL is likely suitable to replace HP architecture to confer a guide for bone consolidation, with an absence of osteogenicity. This study could pave the way to a bio-engineered periosteum built from HFL.
Collapse
|
33
|
Li Z, Zhang Y, Zhao Y, Gao X, Zhu Z, Mao Y, Qian T. Graded-Three-Dimensional Cell-Encapsulating Hydrogel as a Potential Biologic Scaffold for Disc Tissue Engineering. Tissue Eng Regen Med 2022; 19:1001-1012. [PMID: 35962859 PMCID: PMC9478016 DOI: 10.1007/s13770-022-00480-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Intervertebral disk (IVD) degeneration, which can cause lower back pain, is a major predisposing factor for disability and can be managed through multiple approaches. However, there is no satisfactory strategy currently available to reconstruct and recover the natural properties of IVDs after degeneration. As tissue engineering develops, scaffolds with embedded cell cultures have proved critical for the successful regeneration of IVDs. METHODS In this study, an integrated scaffold for IVD replacement was developed. Through scanning electron microscopy and other mechanical measurements, we characterized the physical properties of different hydrogels. In addition, we simulated the physiological structure of natural IVDs. Nucleus pulposus (NP) cells and annulus fibrosus-derived stem cells (AFSCs) were seeded in gelatin methacrylate (GelMA) hydrogel at different concentrations to evaluate cell viability and matrix expression. RESULTS It was found that different concentrations of GelMA hydrogel can provide a suitable environment for cell survival. However, hydrogels with different mechanical properties influence cell adhesion and extracellular matrix component type I collagen, type II collagen, and aggrecan expression. CONCLUSION This tissue-engineered IVD implant had a similar structure and function as the native IVD, with the inner area mimicking the NP tissue and the outer area mimicking the stratified annulus fibrosus tissue. The new integrated scaffold demonstrated a good simulation of disc structure. The preparation of efficient and regeneration-promoting tissue-engineered scaffolds is an important issue that needs to be explored in the future. It is hoped that this work will provide new ideas and methods for the further construction of functional tissue replacement discs.
Collapse
Affiliation(s)
- Zhixiang Li
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yiwen Zhang
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Yupeng Zhao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Xubin Gao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Zhonglian Zhu
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| | - Taibao Qian
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
34
|
Effects of Puerarin Combined with PLGA/TCP/Puerarin on Osteocalcin and Sialoprotein of Mandibular Defects. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5177419. [PMID: 36128172 PMCID: PMC9470327 DOI: 10.1155/2022/5177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
In order to evaluate the effects of puerarin combined with poly lactic-co-glycolic acid (PLGA)/tricalcium phosphate (TCP)/puerarin on osteocalcin and sialoprotein of mandibular defects, the obtained rat jaw cells are analyzed. The surface morphology of osteoblast complex in the scaffold material group and puerarin combined scaffold material group is observed by a scanning electron microscope, and the growth and proliferation of osteoblasts are detected by the Cell Counting Kit-8 (CCK-8) method. Besides, the expression of type-I collagen (COL-I), osteocalcin (OC), and osteopontin (OPN) mRNA and related proteins in osteoblasts are detected by immunocytochemical staining. The results of immunocytochemical staining show that puerarin and PLGA/TCP/puerarin scaffold had significant effects on the expression of COL-I and OC mRNA and related proteins in osteoblasts. The experimental results indicate that puerarin and PLGA/TCP/puerarin can synergistically affect the mRNA and protein expressions of COL-I, OC, and OPN in osteoblasts and have a positive effect on promoting the proliferation activity of osteoblasts.
Collapse
|
35
|
Yang Z, Yang Z, Ding L, Zhang P, Liu C, Chen D, Zhao F, Wang G, Chen X. Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36395-36410. [PMID: 35925784 DOI: 10.1021/acsami.2c08400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The periosteum plays an important role in the regeneration of critical-size bone defects, with functions of recruiting multiple cells, accelerating vascular network reconstruction, and guiding bone tissue regeneration. However, these functions cannot be easily implemented by simply simulating the periosteum via a material structure design or by loading exogenous cytokines. Herein, inspired by the periosteal function, we propose a biomimetic periosteum preparation strategy to enhance natural polymer hydrogel membranes using inorganic bioactive materials. The biomimetic periosteum having bone tissue self-adhesive functions and resembling an extracellular matrix was prepared using dopamine-modified gelatin and oxidized hyaluronan (GA/HA), and micro/nanobioactive glass (MNBG) was further incorporated into the hydrogel to fabricate an organic/inorganic co-crosslinked hydrogel membrane (GA/HA-BG). The addition of MNBG enhanced the stability of the natural polymer hydrogel membrane, resulting in a sustained degradation time, biomineralization, and long-term release of ions. The Ca2+ and SiO44- ions released by bioactive glass were shown to recruit cells and promote the differentiation of bone marrow stromal cells into osteoblasts, initiating multicentric osteogenic behavior. Additionally, the bioactive ions were able to continuously stimulate the endogenous expression of vascular endothelial growth factor from human umbilical vein endothelial cells through the PI3K/Akt/HIF-1α pathway, which accelerated vascularization of the defect area and synergistically promoted the repair of bone defects. This organic-inorganic biomimetic periosteum has been proved to be effective and versatile in critical-size bone defect repair and is expected to provide a promising strategy for solving clinical issues.
Collapse
Affiliation(s)
- Zhen Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Zhengyu Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Lin Ding
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Peng Zhang
- Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, China
| | - Cong Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Gang Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
37
|
3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Sun Y, Liu X, Zhu Y, Han Y, Shen J, Bao B, Gao T, Lin J, Huang T, Xu J, Chai Y, Zheng X. Tunable and Controlled Release of Cobalt Ions from Metal-Organic Framework Hydrogel Nanocomposites Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59051-59066. [PMID: 34846853 DOI: 10.1021/acsami.1c16300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cobalt (Co) ions, which can mimic hypoxia to promote angiogenesis, exhibit great potential for bone repair. However, a key point for the use of Co ions is that their release profile should be controllable and, more importantly, suitable for the bone regeneration process. Here, 2-ethylimidazole (eIm) was introduced into zeolitic imidazolate framework-67 (ZIF-67) to slow down Co-ion release and fabricate eIm-doped ZIF-67 (eIm/ZIF-67), which was combined into gelatin methacrylate (GelMA) to obtain an in situ photo-cross-linking nanocomposite hydrogel as a tunable Co-ion controlled release system. A tunable and controlled release of Co ions from the nanocomposite hydrogel was achieved by variation of linker composition, and GelMA with 75% eIm/ZIF-67 (with 75% eIm in the precursor solutions) could maintain a 21-day sustained release of Co ions, which is matched with early-stage angiogenesis during the bone formation process. Our in vitro study also showed that the GelMA@eIm/ZIF-67 hydrogel could reduce cytotoxicity and effectively promote the angiogenic activity of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, an in vivo rat calvarial defect model demonstrated that the GelMA@eIm/ZIF-67 hydrogel exhibited remarkably enhanced bone formation and neovascularization abilities and had good biocompatibility as shown in organ histopathological examinations. Therefore, this novel nanocomposite hydrogel has strong therapeutic potential as a desirable Co-ion controlled release system and a powerful proangiogenic/osteogenic agent for the treatment of bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yue Han
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Tengli Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| |
Collapse
|
39
|
Ge Z, Yu H, Yang W, Liao X, Wang X, Zhou P, Yang J, Liu B, Liu L. Customized construction of microscale multi-component biostructures for cellular applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112599. [DOI: 10.1016/j.msec.2021.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
|
40
|
Hao J, Bai B, Ci Z, Tang J, Hu G, Dai C, Yu M, Li M, Zhang W, Zhang Y, Ren W, Hua Y, Zhou G. Large-sized bone defect repair by combining a decalcified bone matrix framework and bone regeneration units based on photo-crosslinkable osteogenic microgels. Bioact Mater 2021; 14:97-109. [PMID: 35310359 PMCID: PMC8892219 DOI: 10.1016/j.bioactmat.2021.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration. Decalcified bone matrix (DBM) is considered as an ideal bone regeneration scaffold, but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration. To address these problems, we proposed a novel strategy of bone regeneration units (BRUs) based on microgels produced by photo-crosslinkable and microfluidic techniques, containing both the osteogenic ingredient DBM and vascular endothelial growth factor (VEGF) for accurate biomimic of an osteoinductive microenvironment. The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BRUs were successfully constructed by seeding BMSCs onto microgels, which achieved reliable bone regeneration in vivo. Finally, by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength, a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia. The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair. The photo-crosslinkable microgels contained both osteogenic ingredient DBM powders and angiogenic growth factor VEGF. The photo-crosslinkable microgels effectively promote adhesion, proliferation, and osteogenic differentiation of BMSCs in vitro. Bone regeneration units (BRUs) successfully achieve reliable bone regeneration in vivo. The combination of DBM scaffold and BRUs successfully regenerate bone tissue with the desired 3D morphology and repair large-sized bone defect of rabbit tibia.
Collapse
|
41
|
Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio 2021; 12:100142. [PMID: 34647005 PMCID: PMC8495177 DOI: 10.1016/j.mtbio.2021.100142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Bone defects associated with soft tissue injuries are an important cause of deformity that threatens people’s health and quality of life. Although bone substitutes have been extensively explored, effective biomaterials that can coordinate early inflammation regulation and subsequent repair events are still lacking. We prepared a spatial form periosteal bone extracellular matrix (ECM) scaffold, which has advantages in terms of low immunogenicity, good retention of bioactive ingredients, and a natural spatial structure. The periosteal bone ECM scaffold with the relatively low-stiffness periosteum (41.6 ± 3.7 kPa) could inhibit iNOS and IL-1β expression, which might be related to actin-mediated YAP translocation. It also helped to promote CD206 expression with the potential influence of proteins related to immune regulation. Moreover, the scaffold combined the excellent properties of decalcified bone and periosteum, promoted the formation of blood vessels, and good osteogenic differentiation (RUNX2, Col 1α1, ALP, OPN, and OCN), and achieved good repair of a cranial defect in rats. This scaffold, with its natural structural and biological advantages, provides a new idea for bone healing treatment that is aligned with bone physiology. We provided a spatial form periosteal-bone complex. The scaffold preserved major biological components and spatial structure. The periosteum part of the scaffold acted as a physical barrier. The scaffold participated in the transformation of the macrophage phenotype. The scaffold promoted osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- C. Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - M. Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - K. Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Z. Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - J. Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - S. Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| | - X. Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| |
Collapse
|
42
|
Huang X, Huang D, Zhu T, Yu X, Xu K, Li H, Qu H, Zhou Z, Cheng K, Wen W, Ye Z. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology 2021; 19:207. [PMID: 34247649 PMCID: PMC8274038 DOI: 10.1186/s12951-021-00956-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φs). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.![]()
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Donghua Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Kaicheng Xu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Wen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
43
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
44
|
Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021; 184:170-180. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Bone defect is usually difficult to recover quickly, and bone scaffold transplantation is considered to be an effective method. Biomaterials have a wide range of application prospects in bone tissue repair, and the two key problems are the selection of materials and cells. The object of this study was to discuss the structural characteristics of bone scaffold materials and their effects on bone repair in vivo. The chitin-hydroxyapatite (HAP)-collagen composite scaffolds (CHCS) was prepared with epichlorohydrin (ECH) as crosslinking agent. The structure was characterized and the compressive strength, porosity, water absorbency and stability were investigated. The biocompatibility and osteogenic differentiation of CHCS in vitro were detected, and the effect of defect repair in vivo was evaluated. The results suggested that HAP not only enhanced the compressive strength of CHCS, but also promoted the formation of calcium nodules due to its bone conductivity. Histological staining showed that collagen promoted collagen deposition and new bone formation. X-ray images also indicated that CHCS transplantation accelerated bone repair. Therefore, CHCs has immense potential in bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Rongxue Yang
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Jiufa Cui
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Yufen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hsinchu, Taiwan, Republic of China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
45
|
Laijun L, Yu Z, Chaojing L, Jifu M, Fujun W, Lu W. An enhanced periosteum structure/function dual mimicking membrane for in-siturestorations of periosteum and bone. Biofabrication 2021; 13. [PMID: 33878742 DOI: 10.1088/1758-5090/abf9b0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
Periosteum plays a pivotal role in bone formation and reconstruction. The ideal repair process for critical-size bone defects with periosteum damage is to induce regeneration of periosteum tissue and the subsequent bone regeneration derived by the periosteum. Inspired by the bilayer structure of the natural periosteum, we develop a periosteum structure/function dual mimicking membrane for thein-siturestoration of periosteum and bone tissue. Among them, the macroporous fluffy guiding layer (TPF) simulates the fibrous layer of the natural periosteum, which is conducive to infiltration and oriented growth of fibroblasts. And the extracellular matrix-like bioactive layer (TN) simulates the cambium layer of the natural periosteum, which significantly enhances the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. A middle dense layer (PC) connects the above two layers and has the function of preventing the invasion of soft tissues while enhancing the biomimetic periosteum.In vivorestoration results show that the tri-layer biomimetic periosteum (TPF/PC/TN) has an outstanding effect in promoting the regeneration of both vascularized periosteum and bone at the same time. Therefore, the enhanced biomimetic periosteum developed in this research has a great clinical value in the efficient and high-quality reconstruction of critical-size bone defects with periosteum damage.
Collapse
Affiliation(s)
- Liu Laijun
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Zhang Yu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Li Chaojing
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Mao Jifu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China.,Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Wang Fujun
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China.,Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Wang Lu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| |
Collapse
|
46
|
Cui X, Huang C, Chen Z, Zhang M, Liu C, Su K, Wang J, Li L, Wang R, Li B, Chen D, Ruan C, Wang D, Lu WW, Pan H. Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression. Bioact Mater 2021; 6:3801-3811. [PMID: 33937587 PMCID: PMC8058907 DOI: 10.1016/j.bioactmat.2021.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium phosphate cements (CPC) are widely anticipated to be an optimum bone repair substitute due to its satisfied biocompatibility and degradability, suitable to be used in minimally invasive treatment of bone defects. However the clinical application of CPC is still not satisfied by its poor cohesiveness and mechanical properties, in particular its osteoinductivity. Hyaluronic acid reinforced calcium phosphate cements (HA/CPC) showed extroadinary potential not only enhancing the compressive strength of the cements but also significantly increasing its osteoinductivity. In our study, the compressive strength of HA/CPC increased significantly when the cement was added 1% hyaluronic acid (denoted as 1-HA/CPC). In the meantime, hyaluronic acid obviously promoted ALP activity, osteogenic related protein and mRNA expression of hBMSCs (human bone marrow mesenchymal stem cells) in vitro, cement group of HA/CPC with 4% hyaluronic acid adding (denoted as 4-HA/CPC) showed optimal enhancement in hBMSCs differentiation. After being implanted in rat tibial defects, 4-HA/CPC group exhibited better bone repair ability and bone growth promoting factors, comparing to pure CPC and 1-HA/CPC groups. The underlying biological mechanism of this stimulation for HA/CPC may be on account of higher osteogenic promoting factors secretion and osteogenic genes expression with hyaluronic acid incorporation. These results indicate that hyaluronic acid is a highly anticipated additive to improve physicochemical properties and osteoinductivity performance of CPCs for minimally invasive healing of bone defects.
Collapse
Affiliation(s)
- Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chengcheng Huang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Zhizhen Chen
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Meng Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
| | - Li Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Bing Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Deping Wang
- Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| |
Collapse
|
47
|
Zhang Y, Sun M, Liu T, Hou M, Yang H. Effect of Different Additives on the Mechanical Properties of Gelatin Methacryloyl Hydrogel: A Meta-analysis. ACS OMEGA 2021; 6:9112-9128. [PMID: 33842781 PMCID: PMC8028145 DOI: 10.1021/acsomega.1c00244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 05/24/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogel has adjustable physicochemical properties and a three-dimensional network structure for cell growth and hence a hot issue in the field of tissue engineering. However, its poor mechanical properties limit the application in the scaffold, especially as a bone scaffold. To date, many research studies have been carried out by adding some additives into GelMA to construct GelMA-based composites to improve the mechanical properties. However, there is a controversy as to whether the additives can improve the mechanical properties of GelMA. Herein, meta-analysis was used to evaluate the influence of the additives on the mechanical properties of GelMA-based composites, which can provide reference for the further enhancement of mechanical properties of GelMA. In this study, meta-analysis was adopted to investigate the influence of additives on the mechanical properties of GelMA composites; composites with different concentrations of GelMA, that is, ≥10% (w/v), 5-10% (w/v), and ≤5% (w/v) were found in 23 literatures and heterogeneity could be found among these references. Accordingly, it is found that additives can improve the mechanical properties in each concentration.
Collapse
Affiliation(s)
| | | | - Taotao Liu
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Mengdie Hou
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
48
|
Shuai Y, Lu H, Lv R, Wang J, Wan Q, Mao C, Yang M. Biomineralization Directed by Prenucleated Calcium and Phosphorus Nanoclusters Improving Mechanical Properties and Osteogenic Potential of Antheraea pernyi Silk Fibroin-Based Artificial Periosteum. Adv Healthc Mater 2021; 10:e2001695. [PMID: 33720549 DOI: 10.1002/adhm.202001695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/29/2021] [Indexed: 12/28/2022]
Abstract
The use of biomacromolecules as templates to control the nucleation and growth of hydroxyapatite crystals to prepare bioactive materials is a valuable approach in bone tissue engineering. Here, an artificial periosteum is prepared by biomineralizing Antheraea pernyi fibroin (AF) membrane with prenucleated nanoclusters, which can promote the osteogenic differentiation of mesenchymal stem cells (MSCs) and induce the formation of bone matrix protein in vivo. To achieve this, a biologically inspired prenucleated calcium and phosphorus nanocluster mineralization system is designed to nucleate and generate hydroxyapatite crystals on the surface of the AF membrane. This biomineralization process provides AF membranes with improved elastic modulus and tensile strength. Subsequently, cell viability assay, hemolysis test, and H&E staining show that the mineralized AF (MAF) membranes has good cytocompatibility, hemocompatibility, and histocompatibility in vitro and in vivo. Additionally, the MAF membranes significantly promote osteogenic differentiation of MSCs in the absence of osteogenic inducer in vitro. Experiments in vivo demonstrate that bone-related matrix proteins are highly expressed in MAF groups with or without MSCs seeded. Therefore, the use of bioinspired prenucleated nanoclusters to prepare artificial periosteum based on biomineralized AF membrane is a promising strategy in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Yajun Shuai
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| | - Huan Lu
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| | - Ruyin Lv
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| | - Jie Wang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| | - Quan Wan
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma Norman OK 73019‐5300 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou 310058 China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province College of Animal Science Zhejiang University Hangzhou 310058 China
| |
Collapse
|
49
|
Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:553529. [PMID: 33178669 PMCID: PMC7594528 DOI: 10.3389/fbioe.2020.553529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Exploration for ideal bone regeneration materials still remains a hot research topic due to the unmet clinical challenge of large bone defect healing. Bone grafting materials have gradually evolved from single component to multiple-component composite, but their functions during bone healing still only regulate one or two biological processes. Therefore, there is an urgent need to develop novel materials with more complex composition, which convey multiple biological functions during bone regeneration. Here, we report an naturally nanostructured ECM based composite scaffold derived from fish air bladder and combined with dicalcium phosphate (DCP) microparticles to form a new type of bone grafting material. The DCP/acellular tissue matrix (DCP/ATM) scaffold demonstrated porous structure with porosity over 65% and great capability of absorbing water and other biologics. In vitro cell culture study showed that DCP/ATM scaffold could better support osteoblast proliferation and differentiation in comparison with DCP/ADC made from acid extracted fish collagen. Moreover, DCP/ATM also demonstrated more potent bone regenerative properties in a rat calvarial defect model, indicating incorporation of ECM based matrix in the scaffolds could better support bone formation. Taken together, this study demonstrates a new avenue toward the development of new type of bone regeneration biomaterial utilizing ECM as its key components.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Qianhong He
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Tao Jiang
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|