1
|
Martí ML, Cano Aristizábal V, Motrich R, Valenti LE, Giacomelli CE. Defending Ti6Al4V against Biofilm Formation with Albumin Biofunctionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2089-2102. [PMID: 39812140 DOI: 10.1021/acs.langmuir.4c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface biofunctionalization with structurally perturbed albumin, as well as with other plasmatic proteins, inhibits the initial bacterial adhesion and biofilm formation, involved in numerous healthcare-associated infections. In fact, we have reported this protective effect with thermally treated plasmatic proteins, such as albumin and fibrinogen, adsorbed on flat silica surfaces. Here, we show that albumin biofunctionalization also works properly on flat Ti6Al4V substrates, which are widely used to fabricate medical devices. The protective effect is conserved even in biologically relevant fluids, containing other proteins that potentially adsorb onto and/or displace preadsorbed albumin from the biofunctionalized substrates. We further demonstrate that the presence of structurally perturbed albumin on the substrate does not trigger macrophage activation and the release of inflammatory mediators. Consequently, surface biofunctionalization with thermally perturbed albumin is a simple strategy to prepare antibacterial, nonimmunogenic medical devices.
Collapse
Affiliation(s)
- Ma Laura Martí
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Viviana Cano Aristizábal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Rubén Motrich
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunologia (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura E Valenti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Carla E Giacomelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
2
|
Liu F, Xue Y, Zhou Y, Zhang J, Wang A, Shi R. Trends and Advances in Antimicrobial Surface Modification for Orthopedic Implants (2014-2024). Tissue Eng Part C Methods 2025; 31:11-25. [PMID: 39656098 DOI: 10.1089/ten.tec.2024.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
The failure of orthopedic implants can significantly impact patients physiologically, psychologically, and economically. A bibliometric study of the field of surface modification for antimicrobial purposes in orthopedic implants provides insights into its developmental trajectory and offers valuable predictions for future advancements, thus playing a pivotal role in guiding research in this domain. Relevant publications on surface modification for antimicrobial purposes in orthopedic implants published between 2014 and 2024 were selected from the Web of Science (Core Collection) dataset and analyzed using VOSviewer and Citespace. The analysis encompassed 725 articles. Over the past decade, there has been a steady increase in the number of publications related to surface modification for antimicrobial purposes in orthopedic implants, with China emerging as the primary contributor. Novel antimicrobial materials development, osteogenesis, and angiogenesis have become focal areas of research interest in this domain. Surface modification for antimicrobial purposes in orthopedic implants garners increasing attention. Research in this field is anticipated to expand, with future focus likely to revolve around novel material applications, repair outcomes, and underlying mechanisms.
Collapse
Affiliation(s)
- Fei Liu
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| | - Yun Xue
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| | - You Zhou
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| | - Jingshuang Zhang
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| | - Aoao Wang
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, P.R. China
| |
Collapse
|
3
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
4
|
Shome A, Martinez I, Pinon VD, Moses JC, Garren M, Sapkota A, Crutchfield N, Francis DJ, Brisbois E, Handa H. "Reactive" Chemical Strategy to Attain Substrate Independent " Liquid-Like" Omniphobic Solid Anti-Biofouling Coatings. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2401387. [PMID: 39678671 PMCID: PMC11636641 DOI: 10.1002/adfm.202401387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 12/17/2024]
Abstract
Covalent and defect-free surface-grafted solid lubricating chains that can impart 'liquid-like' slippery behavior have proven advantageous over lubricant infused and textured anti-wetting surfaces. Herein, the co-hydrolysis and co-condensation of a mixture of organosilanes followed by the epoxy-amine ring opening reaction at the interface results in a highly robust, transparent and 'liquid-like' solid slippery omniphobic coating (LL-OSC). The presence of the epoxy-terminated organosilane a) acts as a molecular spacer in between the low-surface energy, rigid fluorine terminated silane and b) provides 'reactive' epoxy groups for covalent binding to a pre-functionalized amine surface for potential applicability in droplet transport and manipulation, diagnostics etc. LL-OSC exhibits resistance to both solid and liquid abrasions such as sandpaper abrasions, prolonged UV irradiation, DI water and high temperature (30 days), submersion in chemically contaminated aqueous solutions. This is the first report of a hemocompatible solid slippery coating for inhibiting platelet adhesion, thus, paving way for blood-contacting medical device applications. Our LL-OSC exhibits remarkable cytocompatibility, repellence to plasma protein, cells and prevents biofilm formation. Additionally, the substrate independent LL-OSC can be applied onto metals and polymers. We envision that the reported durable, solid slippery coating will find widespread applicability in hospital settings, electronic devices etc.
Collapse
Affiliation(s)
- Arpita Shome
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Isabel Martinez
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Vicente D Pinon
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Joseph C Moses
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Aasma Sapkota
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Natalie Crutchfield
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
5
|
Li Y, Han Y, Li H, Niu X, Zhang D, Fan H, Wang K. Chitosan synergizes with bismuth-based metal-organic frameworks to construct double S-type heterojunctions for enhancing photocatalytic antimicrobial activity. Int J Biol Macromol 2024; 265:130797. [PMID: 38479662 DOI: 10.1016/j.ijbiomac.2024.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
In recent years, photocatalytic technology has been introduced to develop a new kind antimicrobial agents fighting antibiotic abusing and related drug resistance. The efforts have focused on non-precious metal photocatalysts along with green additives. In the present work, a novel bis-S heterojunctions based on the coupling of polysaccharide (CS) and bismuth-based MOF (CAU-17) s synthesized through a two-step method involving amidation reaction under mild conditions. The as prepared photocatalyst literally extended the light response to the near-infrared region. Owing to its double S-type heterostructure, the lifetime of the photocarriers is significantly prolonged and the redox capacity are enhanced. As a result, the as prepared photocatalyst indicated inhibition up to 99.9 % under 20 min of light exposure against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria as well as drug-resistant bacteria (MRSA). The outstanding photocatalytic performance is attributed to the effective charge separation and migration due to the unique double S heterostructure. Such a double S heterostructure was confirmed through transient photocurrent response, electrochemical impedance spectroscopy tests and electron spin resonance measurements. The present work provides a basis for the simple synthesis of high-performance heterojunction photocatalytic inhibitors, which extends the application of CAU-17 in environmental disinfection and wastewater purification.
Collapse
Affiliation(s)
- Yanni Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yujia Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
6
|
Chowdhury SR, Mondal G, Ratnayake P, Basu B. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties. ACS Biomater Sci Eng 2024; 10:1040-1061. [PMID: 38294204 DOI: 10.1021/acsbiomaterials.3c01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The compositional formulations and the optimization of process parameters to fabricate hydrogel scaffolds with urological tissue-mimicking biophysical properties are not yet extensively explored, including a comprehensive assessment of a spectrum of properties, such as mechanical strength, viscoelasticity, antimicrobial property, and cytocompatibility. While addressing this aspect, the present work provides mechanistic insights into process science, to produce shape-fidelity compliant alginate-based biomaterial ink blended with gelatin and synthetic nanocellulose. The composition-dependent pseudoplasticity, viscoelasticity, thixotropy, and gel stability over a longer duration in physiological context have been rationalized in terms of intermolecular hydrogen bonding interactions among the biomaterial ink constituents. By varying the hybrid hydrogel ink composition within a narrow compositional window, the resulting hydrogel closely mimics the natural urological tissue-like properties, including tensile stretchability, compressive strength, and biophysical properties. Based on the printability assessment using a critical analysis of gel strength, we have established the buildability of the acellular hydrogel ink and have been successful in fabricating shape-fidelity compliant urological patches or hollow cylindrical grafts using 3D extrusion printing. Importantly, the new hydrogel formulations with good hydrophilicity, support fibroblast cell proliferation and inhibit the growth of Gram-negative E. coli bacteria. These attributes were rationalized in terms of nanocellulose-induced physicochemical changes on the scaffold surface. Taken together, the present study uncovers the process-science-based understanding of the 3D extrudability of the newly formulated alginate-gelatin-nanocellulose-based hydrogels with urological tissue-specific biophysical, cytocompatibility, and antibacterial properties.
Collapse
Affiliation(s)
- Sulob Roy Chowdhury
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Garga Mondal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Ullah I, Ou P, Xie L, Liao Q, Zhao F, Gao A, Ren X, Li Y, Wang G, Wu Z, Chu PK, Wang H, Tong L. Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections. Acta Biomater 2024; 175:382-394. [PMID: 38160853 DOI: 10.1016/j.actbio.2023.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants. STATEMENT OF SIGNIFICANCE: • A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. • The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation. • The degradation rate of ZnO nanorods is significantly decreased after CaP deposition. • The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..
Collapse
Affiliation(s)
- Ihsan Ullah
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Peiyan Ou
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingxia Xie
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Feilong Zhao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiting Li
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Silva JPDS, Costa RC, Nagay BE, Borges MHR, Sacramento CM, da Cruz NC, Rangel EC, Fortulan CA, da Silva JHD, Ruiz KGS, Barão VAR. Boosting Titanium Surfaces with Positive Charges: Newly Developed Cationic Coating Combines Anticorrosive and Bactericidal Properties for Implant Application. ACS Biomater Sci Eng 2023; 9:5389-5404. [PMID: 37561763 DOI: 10.1021/acsbiomaterials.3c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.
Collapse
Affiliation(s)
- João Pedro Dos S Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina M Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - José H D da Silva
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
9
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
10
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Liu T, Liu W, Zeng L, Wen Z, Xiong Z, Liao Z, Hu Y. Biofunctionalization of 3D Printed Porous Tantalum Using a Vancomycin-Carboxymethyl Chitosan Composite Coating to Improve Osteogenesis and Antibiofilm Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41764-41778. [PMID: 36087275 DOI: 10.1021/acsami.2c11715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
3D-printed porous tantalum scaffold has been increasingly used in arthroplasty due to its bone-matching elastic modulus and good osteoinductive ability. However, the lack of antibacterial ability makes it difficult for tantalum to prevent the occurrence and development of periprosthetic joint infection. The difficulty and high cost of curing periprosthetic joint infection (PJI) and revision surgery limit the further clinical application of tantalum. Therefore, we fabricated vancomycin-loaded porous tantalum scaffolds by combining the chemical grafting of (3-aminopropyl)triethoxysilane (APTES) and the electrostatic assembly of carboxymethyl chitosan and vancomycin for the first time. Our in vitro experiments show that the scaffold achieves rapid killing of initially adherent bacteria and effectively prevents biofilm formation. In addition, our modification preserves the original excellent structure and biocompatibility of porous tantalum and promotes the generation of mineralized matrix and osteogenesis-related gene expression by mesenchymal stem cells on the surface of scaffolds. Through a rat subcutaneous infection model, the composite bioscaffold shows efficient bacterial clearance and inflammation control in soft tissue and creates an immune microenvironment suitable for tissue repair at an early stage. Combined with the economic friendliness and practicality of its preparation, this scaffold has great clinical application potential in the treatment of periprosthetic joint infection.
Collapse
Affiliation(s)
- Tuozhou Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Wenbin Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Liyi Zeng
- Centers for Disease Control and Prevention, Zhuzhou 412008, P. R. China
| | - Zhongchi Wen
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zixuan Xiong
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zhan Liao
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Yihe Hu
- Department of Orthopeadics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 311121, P. R. China
| |
Collapse
|
12
|
Effect of Surface Tooling Techniques of Medical Titanium Implants on Bacterial Biofilm Formation In Vitro. MATERIALS 2022; 15:ma15093228. [PMID: 35591562 PMCID: PMC9103970 DOI: 10.3390/ma15093228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study was to assess the biofilm formation of Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli on titanium implants with CAD-CAM tooling techniques. Twenty specimens of titanium were studied: Titanium grade 2 tooled with a Planmeca CAD-CAM milling device (TiGrade 2), Ti6Al4V grade 5 as it comes from CAD-DMLS device (computer aided design-direct metal laser sintering device) (TiGrade 5), Ti6Al4V grade 23 as it comes from a CAD-CAM milling device (TiGrade 23), and CAD-DMLS TiGrade 5 polished with an abrasive disc (TiGrade 5 polished). Bacterial adhesion on the implants was completed with and without saliva treatment to mimic both extraoral and intraoral surgical methods of implant placement. Five specimens/implant types were used in the bacterial adhesion experiments. Autoclaved implant specimens were placed in petri plates and immersed in saliva solution for 30 min at room temperature and then washed 3×with 1 ×PBS. Bacterial suspensions of each strain were made and added to the specimens after saliva treatment. Biofilm was allowed to form for 24 h at 37 °C and the adhered bacteria was calculated. Tooling techniques had an insignificant effect on the bacterial adhesion by all the bacterial strains studied. However, there was a significant difference in biofilm formation between the saliva-treated and non-saliva-treated implants. Saliva contamination enhanced S. mutans, S. aureus, and E. faecalis adhesion in all material types studied. S. aureus was found to be the most adherent strain in the saliva-treated group, whereas E. coli was the most adherent strain in the non-saliva-treated group. In conclusion, CAD-CAM tooling techniques have little effect on bacterial adhesion. Saliva coating enhances the biofilm formation; therefore, saliva contamination of the implant must be minimized during implant placement. Further extensive studies are needed to evaluate the effects of surface treatments of the titanium implant on soft tissue response and to prevent the factors causing implant infection and failure.
Collapse
|
13
|
Metcalf R, Oliver DM, Moresco V, Quilliam RS. Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate 'control' material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152292. [PMID: 34896491 DOI: 10.1016/j.scitotenv.2021.152292] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Discarded plastic wastes in the environment are serious challenges for sustainable waste management and for the delivery of environmental and public health. Plastics in the environment become rapidly colonised by microbial biofilm, and importantly this so-called 'plastisphere' can also support, or even enrich human pathogens. The plastisphere provides a protective environment and could facilitate the increased survival, transport and dissemination of human pathogens and thus increase the likelihood of pathogens coming into contact with humans, e.g., through direct exposure at beaches or bathing waters. However, much of our understanding about the relative risks associated with human pathogens colonising environmental plastic pollution has been inferred from taxonomic identification of pathogens in the plastisphere, or laboratory experiments on the relative behaviour of plastics colonised by human pathogens. There is, therefore, a pressing need to understand whether plastics play a greater role in promoting the survival and dispersal of human pathogens within the environment compared to other substrates (either natural materials or other pollutants). In this paper, we consider all published studies that have detected human pathogenic bacteria on the surfaces of environmental plastic pollution and critically discuss the challenges of selecting an appropriate control material for plastisphere experiments. Whilst it is clear there is no 'perfect' control material for all plastisphere studies, understanding the context-specific role plastics play compared to other substrates for transferring human pathogens through the environment is important for quantifying the potential risk that colonised plastic pollution may have for environmental and public health.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
14
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
15
|
Daskalova A, Filipov E, Angelova L, Stefanov R, Tatchev D, Avdeev G, Sotelo L, Christiansen S, Sarau G, Leuchs G, Iordanova E, Buchvarov I. Ultra-Short Laser Surface Properties Optimization of Biocompatibility Characteristics of 3D Poly-ε-Caprolactone and Hydroxyapatite Composite Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7513. [PMID: 34947106 PMCID: PMC8707740 DOI: 10.3390/ma14247513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022]
Abstract
The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs-wood pile and snowflake-with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.
Collapse
Affiliation(s)
- Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Boulevard, 1784 Sofia, Bulgaria; (E.F.); (L.A.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Boulevard, 1784 Sofia, Bulgaria; (E.F.); (L.A.)
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Boulevard, 1784 Sofia, Bulgaria; (E.F.); (L.A.)
| | - Radostin Stefanov
- Printivo Group JSC, 111 Tsarigradsko Shose Boulevard, 1784 Sofia, Bulgaria;
| | - Dragomir Tatchev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Bld. 11, 1113 Sofia, Bulgaria; (D.T.); (G.A.)
| | - Georgi Avdeev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Bld. 11, 1113 Sofia, Bulgaria; (D.T.); (G.A.)
| | - Lamborghini Sotelo
- Institute for Nanotechnology and Correlative Microscopy GmbH (INAM), Äußere Nürnberger Straße 62, 91301 Forchheim, Germany; (L.S.); (S.C.); (G.S.)
- Institute for Optics, Information and Photonics, Friedrich-Alexander-University, Erlangen-Nürnberg (FAU), Schloßplatz 4, 91054 Erlangen, Germany;
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy GmbH (INAM), Äußere Nürnberger Straße 62, 91301 Forchheim, Germany; (L.S.); (S.C.); (G.S.)
| | - George Sarau
- Institute for Nanotechnology and Correlative Microscopy GmbH (INAM), Äußere Nürnberger Straße 62, 91301 Forchheim, Germany; (L.S.); (S.C.); (G.S.)
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - Gerd Leuchs
- Institute for Optics, Information and Photonics, Friedrich-Alexander-University, Erlangen-Nürnberg (FAU), Schloßplatz 4, 91054 Erlangen, Germany;
| | - Ekaterina Iordanova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Boulevard, 1784 Sofia, Bulgaria;
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria;
| |
Collapse
|
16
|
Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021; 298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Polymicrobial infection is the main cause of dental implant failure. Although numerous studies have reported the ability of titanium (Ti) surface modifications to inhibit microbial adhesion and biofilm accumulation, the majority of solutions for the utilization of Ti antibacterial surfaces have been testedin in vitro and animal models, with only a few developed surfaces progressing into clinical research. Motivated by this huge gap, we critically reviewed the scientific literature on the existing antibacterial Ti surfaces to help understand these surfaces' impact on the "puzzle" of undesirable dental implant-related infections. This manuscript comprises three main sections: (i) a narrative review on topics related to oral biofilm formation, bacterial-implant surface interactions, and on how implant-surface modifications can influence microbial accumulation; (ii) a critical evidence-based review to summarize pre-clinical and clinical studies in an attempt to "fit pieces into the puzzle" to unveil the best way to reduce microbial loads and control polymicrobial infection around dental implants showed by the current in vivo evidence; and (iii) discussion and recommendations for future research testing emerging antibacterial implant surfaces, connecting basic science and the requirements for future clinical translation. The findings of the present review suggest no consensus regarding the best available Ti surface to reduce bacterial colonization on dental implants. Smart release or on-demand activation surface coatings are a "new piece of the puzzle", which may be the most effective alternative for reducing microbial colonization on Ti surfaces, and future studies should focus on these technologies.
Collapse
|
17
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
18
|
Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 2021; 9:643722. [PMID: 33644027 PMCID: PMC7907602 DOI: 10.3389/fbioe.2021.643722] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are structured microbial communities attached to surfaces, which play a significant role in the persistence of biofoulings in both medical and industrial settings. Bacteria in biofilms are mostly embedded in a complex matrix comprised of extracellular polymeric substances that provide mechanical stability and protection against environmental adversities. Once the biofilm is matured, it becomes extremely difficult to kill bacteria or mechanically remove biofilms from solid surfaces. Therefore, interrupting the bacterial surface sensing mechanism and subsequent initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Noting that the process of bacterial adhesion is influenced by many factors, including material surface properties, this review summarizes recent works dedicated to understanding the influences of surface charge, surface wettability, roughness, topography, stiffness, and combination of properties on bacterial adhesion. This review also highlights other factors that are often neglected in bacterial adhesion studies such as bacterial motility and the effect of hydrodynamic flow. Lastly, the present review features recent innovations in nanotechnology-based antifouling systems to engineer new concepts of antibiofilm surfaces.
Collapse
Affiliation(s)
- Sherry Zheng
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marwa Bawazir
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Atul Dhall
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hye-Eun Kim
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Le He
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Heo
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Geelsu Hwang
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|