1
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
2
|
Li F, Chen L, Zhong S, Chen J, Cao Y, Yu H, Ran H, Yin Y, Reutelingsperger C, Shu S, Ling Z. Collagen-Targeting Self-Assembled Nanoprobes for Multimodal Molecular Imaging and Quantification of Myocardial Fibrosis in a Rat Model of Myocardial Infarction. ACS NANO 2024; 18:4886-4902. [PMID: 38295159 DOI: 10.1021/acsnano.3c09801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue. Furthermore, although echocardiography is real-time and convenient, it lacks the necessary resolution for detecting fibrotic myocardium, thus limiting its value in fibrosis detection. Inspired by the postinfarction accumulation of collagen types I and III, we developed a collagen-targeted multimodal imaging nanoplatform, CNA35-GP@NPs, comprising lipid nanoparticles (NPs), encapsulating gold nanorods (GNRs) and perfluoropentane (PFP). This platform facilitated ultrasound/photoacoustic/CT imaging of postinfarction cardiac fibrosis in a rat model of myocardial infarction (MI). The surface-modified peptide CNA35 exhibited excellent collagen fiber targeting. The strong near-infrared light absorption and substantial X-ray attenuation of the nanoplatform rendered it suitable for photoacoustic and CT imaging. In the rat model of MI, our study demonstrated that CNA35-GNR/PFP@NPs (CNA35-GP@NPs) achieved photoacoustic, ultrasound, and enhanced CT imaging of the fibrotic myocardium. Notably, the photoacoustic signal intensity positively correlated with the severity of myocardial fibrosis. Thus, this study presents a promising approach for accurately detecting and treating the fibrotic myocardium.
Collapse
Affiliation(s)
- Fang Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Lihua Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Shigeng Zhong
- Department of Ultrasound, Chongqing People's Hospital, Chongqing 400010, P. R. China
| | - Jinhua Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yang Cao
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Han Yu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhiyu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
3
|
Xiang Z, Zhang J, Zhou C, Zhang B, Chen N, Li M, Fu D, Wang Y. Near-Infrared Remotely Controllable Shape Memory Biodegradable Occluder Based on Poly(l-lactide- co-ε-caprolactone)/Gold Nanorod Composite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42341-42353. [PMID: 37647023 DOI: 10.1021/acsami.3c09852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Biodegradable occluders, which can efficiently eliminate the complications caused by permanent foreign implants, are considered to be the next-generation devices for the interventional treatment of congenital heart disease. However, the controllability of the deployment process of degradable occluders remains a challenge. In this work, a near-infrared (NIR) remotely controllable biodegradable occluder is explored by integrating poly(l-lactide-co-ε-caprolactone) (PLCL) with poly(ethylene glycol)-modified gold nanorods (GNR/PEG). The caprolactone structural units can effectively increase the toughness of poly(l-lactide) and reduce the shape-memory transition temperature of the occluder to a more tissue-friendly temperature. Gold nanorods endow the PLCL-GNR/PEG composite with an excellent photothermal effect. The obtained occluder can be easily loaded into a catheter for transport and spatiotemporally expanded under irradiation with near-infrared light to block the defect site. Both in vitro and in vivo biological experiments showed that PLCL-GNR/PEG composites have good biocompatibility, and the PEGylated gold nanorods could improve the hemocompatibility of the composites to a certain extent by enhancing their hydrophilicity. As a thermoplastic shape-memory polymer, PLCL-GNR/PEG can be easily processed into various forms and structures for different patients and lesions. Therefore, PLCL-GNR/PEG has the potential to be considered as a competitive biodegradable material not only for occluders but also for other biodegradable implants.
Collapse
Affiliation(s)
- Zhen Xiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jiayi Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chen Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mingyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Li L, Gil CJ, Finamore TA, Evans CJ, Tomov ML, Ning L, Theus A, Kabboul G, Serpooshan V, Roeder RK. Methacrylate‐Modified Gold Nanoparticles Enable Noninvasive Monitoring of Photocrosslinked Hydrogel Scaffolds. ADVANCED NANOBIOMED RESEARCH 2022; 2. [DOI: 10.1002/anbr.202200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lan Li
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Notre Dame Center for Nanoscience and Technology (NDnano) Materials Science and Engineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Tyler A. Finamore
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Department of Pediatrics Emory University School of Medicine Emory University Atlanta GA 30322 USA
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Notre Dame Center for Nanoscience and Technology (NDnano) Materials Science and Engineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame 148 Multidisciplinary Research Building Notre Dame IN 46556 USA
| |
Collapse
|
6
|
Qin T, Liao W, Yu L, Zhu J, Wu M, Peng Q, Han L, Zeng H. Recent progress in conductive self‐healing hydrogels for flexible sensors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Qin
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Wenchao Liao
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Li Yu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Junhui Zhu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Meng Wu
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Qiongyao Peng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Hongbo Zeng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
7
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Roux BM, Vaicik MK, Shrestha B, Montelongo S, Stojkova K, Yang F, Guda T, Cinar A, Brey EM. Induced Pluripotent Stem Cell-Derived Endothelial Networks Accelerate Vascularization But Not Bone Regeneration. Tissue Eng Part A 2021; 27:940-961. [PMID: 32924856 PMCID: PMC8336421 DOI: 10.1089/ten.tea.2020.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Vascularization is critical for engineering mineralized tissues. It has been previously shown that biomaterials containing preformed endothelial networks anastomose to host vasculature following implantation. However, the networks alone may not increase regeneration. In addition, a clinically applicable source of cells for vascularization is needed. In this study, vascular networks were generated from endothelial cells (ECs) derived from human induced pluripotent stem cells (iPSCs). Network formation by iPSC-ECs within fibrin gels was investigated in a mesenchymal stem cells (MSCs) coculture spheroid model. Statistical design of experiments technique was evaluated for its predicting capability during the optimization of experimental parameters. The prevascularized units were combined with hydroxyapatite nanoparticles to develop a vascularized composite hydrogel that was implanted in a rodent critical-sized cranial defect model. Immunohistological staining for human-specific CD31 at week 1 indicated the presence and maintenance of the implanted vessels. At 8 weeks, the prevascularized systems resulted in higher vessel density over MSC-only scaffolds. The implanted vessels appeared to establish flow with host vasculature. While there was a slight increase in bone volume in the prevascularized bone construct compared to MSC-only bone constructs, there was not a profound increase in bone regeneration. These results show that scaffolds with network structures can be generated from ECs derived from iPSC and that the networks survive and inosculate with the host postimplantation in a bone model. Impact statement Vascularization is critical for engineering bone. Prevascularized scaffolds have been shown to improve postimplantation vascularization. Herein, vascularized networks were generated from induced pluripotent cells derived from endothelial cells. These vascularized units were combined with a fibrin/hydroxyapatite scaffold to develop a prevascularized construct for bone regeneration. Implantation of these scaffolds in a small animal cranial defect model resulted in network inosculation and increased vascularization, but exhibited only a limited effect on bone formation. This study provides insight into the challenges of generating vascularized bone.
Collapse
Affiliation(s)
- Brianna M. Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Research Service, Edward Hines, Jr. VA Hospital, Hines, Illinois, USA
| | - Marcella K. Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Research Service, Edward Hines, Jr. VA Hospital, Hines, Illinois, USA
| | - Binita Shrestha
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sergio Montelongo
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Feipeng Yang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Research Service, Edward Hines, Jr. VA Hospital, Hines, Illinois, USA
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
9
|
Somo SI, Brown JM, Brey EM. Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Front Chem 2020; 8:575278. [PMID: 33282827 PMCID: PMC7688585 DOI: 10.3389/fchem.2020.575278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
The current standard treatment for Type 1 diabetes is the administration of exogenous insulin to manage blood glucose levels. Cellular therapies are in development to address this dependency and allow patients to produce their own insulin. Studies have shown that viable, functional allogenic islets can be encapsulated inside alginate-based materials as a potential treatment for Type 1 diabetes. The capability of these grafts is limited by several factors, among which is the stability and longevity of the encapsulating material in vivo. Previous studies have shown that multilayer Alginate-Poly-L-Ornithine-Alginate (A-PLO-A) microbeads are effective in maintaining cellular function in vivo. This study expands upon the existing encapsulation material by investigating whether covalent crosslinking of the outer alginate layer increases stability. The alginate comprising the outer layer was methacrylated, allowing it to be covalently crosslinked. Microbeads with a crosslinked outer layer exhibited a consistent outer layer thickness and increased stability when exposed to chelating agents in vitro. The outer layer was maintained in vivo even in the presence of a robust inflammatory response. The results demonstrate a technique for generating A-PLO-A with a covalently crosslinked outer layer.
Collapse
Affiliation(s)
- Sami I. Somo
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States
| | - Jacob M. Brown
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Eric M. Brey
| |
Collapse
|
10
|
Shrestha B, Wang L, Zhang H, Hung CY, Tang L. Gold Nanoparticles Mediated Drug-Gene Combinational Therapy for Breast Cancer Treatment. Int J Nanomedicine 2020; 15:8109-8119. [PMID: 33116521 PMCID: PMC7585780 DOI: 10.2147/ijn.s258625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cancer is a complex heterogeneous disease to which singular modes of treatment mostly fail to produce a desired therapeutic efficacy. Targeting different cellular pathways using combinational therapies has been gaining popularity in cancer treatment, with the added benefit of reducing dosage and side effects. METHODS A gold nanoparticle-mediated drug delivery nanoplatform was developed for co-delivery of doxorubicin and polo-like kinase 1 (PLK1) siRNA. Gold nanoparticles were coated with polyethyleneimine to facilitate assembly of PLK1 on the surface. Doxorubicin was loaded on nanoparticles through a pH-sensitive linker with a thiol group at one terminal end for controlled release. RESULTS The therapeutic efficiency of this co-delivery system was evaluated in 2D and 3D cultured systems. The reduced IC50 value clearly demonstrated the synergistic effect of combined drug and gene delivery over their individual delivery in a cancer treatment model. CONCLUSION This study may provide an adaptable, facile platform to investigate drug-siRNA combinations for cancer inhibition.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Lijun Wang
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hao Zhang
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Chiung Yu Hung
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Liang Tang
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|