1
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
2
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Zhu J, Song T, Li Z, Zheng W, Liu Y, Li H, Wang S, Tang J, Feng S, Wang L, Lu X, Yuan F, Zhu Z. Integration of bioinformatics and multi-layered experimental validation reveals novel functions of acetylation-related genes in intervertebral disc degeneration. Gene 2024; 933:148974. [PMID: 39349110 DOI: 10.1016/j.gene.2024.148974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The molecular mechanisms underlying intervertebral disc degeneration (IDD) remain poorly understood. The purpose of this work is to elucidate key molecules and investigate the roles of acetylation-related RNAs and their associated pathways in IDD. METHOD Datasets GSE70362 and GSE124272 were obtained from the Gene Expression Omnibus (GEO) and combined to investigate differentially expressed genes (DEGs) associated with acetylation in IDD patients compared to healthy controls. Critical genes were pinpointed by integrating GO, KEGG and PPI networks. Furthermore, CIBERSORTx analysis was used to investigate the differences in immune cell infiltration between different groups and the biological processes (BP), cellular components (CC) and molecular functions (MF) were calculated by GSEA and GSVA. In addition, The single-cell database GSE165722 was incorporated to validate the specific expression patterns of hub genes in cells and identify distinct cell subtypes. This provides a theoretical basis for a more in-depth understanding of the roles played by critical cell subtypes in the process of IDD. Subsequently, tissues from IVD with varying degrees of degeneration were collected to corroborate the key DEGs using western blot, RT-qPCR, and immunofluorescence staining. RESULTS By integrating various datasets and references, we identified a total of 1620 acetylation-related genes. These genes were subjected to a combined analysis with the DEGs from the databases included in this study, resulting in the discovery of 358 acetylation-related differentially expressed genes (ARDEGs). A comparative analysis with differentially expressed genes obtained from three databases yielded 19 ARDEGs. The PPI network highlighted the top 10 genes (IL1B, LAMP1, PPIA, SOD2, LAMP2, FBL, MBP, SELL, IRF1 and KHDRBS1) based on their protein interaction relationships. CIBERSORTx immune infiltration analysis revealed a moderate positive correlation between the gene IL1β and Mast.cells.activated, as well as a similar correlation between the gene IRF1 and Mast.cells.activated. Single-cell dataset was used to identify cell types and illustrate the distribution of hub genes in different cell types. The two cell types with the highest AUCell scores (Neutrophils and Monocytes) were further explored, leading to the subdivision of Neutrophils into two new cell subtypes: S100A9-type Neutrophils and MARCKS-type Neutrophils. Monocytes were labeled as HLA-DRA9-type Monocytes and IGHG3-type Monocytes. Finally, molecular biology techniques were employed to validate the expression of the top 10 hub genes. Among them, four genes (IL1β, SOD2, LAMP2, and IRF1) were confirmed at the gene level, while two (IL1β and SOD2) were validated at the protein level. CONCLUSION In this study, we carried out a thorough analysis across three databases to identify and compare ARDEGs between IDD patients and healthy individuals. Furthermore, we validated a subset of these genes using molecular biology techniques on clinical samples. The identification of these differently expressed genes has the potential to offer new insights for diagnosing and treating IDD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Tongqu Song
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Zheng Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Yong Liu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Hao Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Song Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jinlong Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Shuo Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| | - Zhengya Zhu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| |
Collapse
|
4
|
Hong Y, Duan Y, Zhu Z, Yu Q, Mo Z, Wang H, Zhou T, Liu Z, Bai J, Zhang X, Yang H, Zhu C, Li B. IL-1ra loaded chondroitin sulfate-functionalized microspheres for minimally invasive treatment of intervertebral disc degeneration. Acta Biomater 2024; 185:336-349. [PMID: 38969077 DOI: 10.1016/j.actbio.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1β, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1β. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.
Collapse
Affiliation(s)
- Youzhi Hong
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yudong Duan
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qifan Yu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhanfeng Mo
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Tao Zhou
- Department of Spinal Surgery, Ma'anshan People's Hospital, Ma'anshan, Anhui, 243000, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215000, China
| | - Jianzhong Bai
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaoyu Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huilin Yang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
5
|
Alizadeh S, Ameri Z, Daemi H, Pezeshki-Modaress M. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities. Carbohydr Polym 2024; 336:122124. [PMID: 38670755 DOI: 10.1016/j.carbpol.2024.122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Sulfated polysaccharides play important roles in tissue engineering applications because of their high growth factor preservation ability and their native-like biological features. There are different sulfated polysaccharides based on different repeating units in the carbohydrate backbone, the position of the sulfate group, and the sulfation degree of the polysaccharide. These led to various sulfated polymers with different negative charge densities and resultant structure-property relationships. Since numerous reports are presented related to sulfated polysaccharide applications in tissue engineering, it is crucial to review the role of effective physicochemical and biological parameters in their usage; as well as their structure-property relationships. Within this review, we focused on the effect of naturally occurring and synthetic sulfated polysaccharides in tissue engineering applications reported in the last years, highlighting the challenges of the scaffold fabrication process, the position, and the degree of sulfate on biomedical activity. Additionally, we discussed their use in numerous in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ameri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024:10.1007/s11916-024-01296-6. [PMID: 38985414 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
7
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
8
|
Zhang K, Du L, Li Z, Huo Z, Shen L, Gao S, Jia Y, Zhu M, Xu B. M2 Macrophage-Derived Small Extracellular Vesicles Ameliorate Pyroptosis and Intervertebral Disc Degeneration. Biomater Res 2024; 28:0047. [PMID: 38952714 PMCID: PMC11214826 DOI: 10.34133/bmr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Intervertebral discs (IVDs) have a limited self-regenerative capacity and current strategies for IVD regeneration are unsatisfactory. Recent studies showed that small extracellular vesicles derived from M2 macrophage cells (M2-sEVs) inhibited inflammation by delivery of various bioactive molecules to recipient cells, which indicated that M2-sEVs may offer a therapeutic strategy for the repair of IVDs. Herein, we investigated the roles and mechanisms of M2-sEVs on IVD regeneration. The in vitro results demonstrated that M2-sEVs inhibited pyroptosis, preserved cellular viability, and promoted migration of nucleus pulposus cells (NPCs). Bioinformatics analysis and verification experiments of microRNA (miR) expression showed that miR-221-3p was highly expressed in M2-sEVs. The mechanism of action was explored and indicated that M2-sEVs inhibited pyroptosis of NPCs through transfer of miR-221-3p, which suppressed the expression levels of phosphatase and tensin homolog and NOD-, LRR-, and pyrin domain-containing protein 3. Moreover, we fabricated decellularized ECM-hydrogel (dECM) for sustained release of M2-sEVs, which exhibited biocompatibility and controlled release properties. The in vivo results revealed that dECM-hydrogel containing M2-sEVs (dECM/M2-sEVs) delayed the degeneration of intervertebral disc degeneration (IDD) models. In addition to demonstrating a promising therapeutic for IDD, this study provided valuable data for furthering the understanding of the roles and mechanisms of M2-sEVs in IVD regeneration.
Collapse
Affiliation(s)
- Kaihui Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Zhenhua Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Zhenxin Huo
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Li Shen
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yiming Jia
- Department of Stomatology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),
Nankai University, Tianjin 300071, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| |
Collapse
|
9
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
10
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
11
|
Song H, Guo C, Wu Y, Liu Y, Kong Q, Wang Y. Therapeutic factors and biomaterial-based delivery tools for degenerative intervertebral disc repair. Front Cell Dev Biol 2024; 12:1286222. [PMID: 38374895 PMCID: PMC10875104 DOI: 10.3389/fcell.2024.1286222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is the main cause of low back pain (LBP), which significantly impacts global wellbeing and contributes to global productivity declines. Conventional treatment approaches, encompassing conservative and surgical interventions, merely serve to postpone the advancement of IDD without offering a fundamental reversal. Consequently, there is an urgent demand for an effective approach to prevent the progression of IDD. Recent investigations focusing on the treatment of IDD utilizing diverse bioactive substances integrated within various biomaterials have exhibited promising outcomes. Various bioactive substances, encompassing conventional small molecule drugs, small molecule nucleic acids, and cell therapies, exhibit distinct capacities for repairing IDD. Additionally, various biological material delivery systems, such as nano micelles, microspheres, and hydrogels, possess diverse biological and release characteristics. Consequently, these diverse materials and drugs hold promise for advancing the treatment of IDD. This article aims to provide a concise overview of the IDD process and investigate the research advancements in biomaterials and bioactive substances for IDD treatment, delving into their mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Riahinezhad H, Amsden BG. In situ forming, mechanically resilient hydrogels prepared from 4a-[PEG- b-PTMC-Ac] and thiolated chondroitin sulfate for nucleus pulposus cell delivery. J Mater Chem B 2024; 12:1257-1270. [PMID: 38167961 DOI: 10.1039/d3tb02574h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intervertebral disk degeneration (IVDD) is a common condition that causes severe back pain and affects patients' mobility and life quality considerably. IVDD originates within the central region of the disk called the nucleus pulposus (NP). Removing the damaged tissue and replacing it with NP cells (NPCs) delivered within an in situ forming hydrogel is a promising treatment approach. Herein we describe a hydrogel formulation based on 4-arm [poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate] (4a[PEG-b-PTMC-Ac]) crosslinked with thiolated chondroitin sulfate via Michael-type reaction for this purpose. A library of hydrogels based on 15 kDa 4a-[PEG] with PTMC blocks of varying molecular weight were prepared and characterized. The instantaneous moduli of the hydrogels were adjustable from 24 to 150 kPa depending on the length of the PTMC block and the polymer volume fraction. The influence of each of these parameters was effectively explained using both scaling or mean field theories of polyelectrolyte hydrogels. The hydrogels were resistant to cyclic compressive loading and degraded gradually over 70 days in vitro. A hydrogel formulation with an instantaneous modulus at the high end of the range of values reported for human NP tissue was chosen to assess the ability of these hydrogels for delivering NPCs. The prepolymer solution was injectable and formed a hydrogel within 30 minutes at 37 °C. Bovine NPCs were encapsulated within this hydrogel with high viability and proliferated throughout a 28 day, hypoxic culture period. The encapsulated NPCs formed clusters and deposited collagen type II but no collagen type I within the hydrogels. Despite an initial gradual decrease, a steady-state modulus was reached at the end of the 28 day culture period that was within the range reported for healthy human NP tissue. This in situ forming hydrogel formulation is a promising approach and with further development could be a viable clinical treatment for IVDD.
Collapse
Affiliation(s)
- Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
13
|
Ma T, Liu C, Zhao Q, Zhang Y, Xiao L. Decellularized nucleus pulposus matrix/chitosan hybrid hydrogel combined with nucleus pulposus stem cells and GDF5-loaded microspheres for intervertebral disc degeneration prevention. Mol Med 2024; 30:7. [PMID: 38200442 PMCID: PMC10782726 DOI: 10.1186/s10020-024-00777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Chen Liu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China.
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, 241001, China.
| |
Collapse
|
14
|
Nakielski P, Rybak D, Jezierska-Woźniak K, Rinoldi C, Sinderewicz E, Staszkiewicz-Chodor J, Haghighat Bayan MA, Czelejewska W, Urbanek O, Kosik-Kozioł A, Barczewska M, Skomorowski M, Holak P, Lipiński S, Maksymowicz W, Pierini F. Minimally Invasive Intradiscal Delivery of BM-MSCs via Fibrous Microscaffold Carriers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58103-58118. [PMID: 38019273 DOI: 10.1021/acsami.3c11710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(l-lactide-co-glycolide) and poly(l-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Emilia Sinderewicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Joanna Staszkiewicz-Chodor
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Wioleta Czelejewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Monika Barczewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mateusz Skomorowski
- Neurosurgery Clinic, University Clinical Hospital in Olsztyn, Warszawska 30, Olsztyn 10-082, Poland
| | - Piotr Holak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Seweryn Lipiński
- Department of Electrical Engineering, Power Engineering, Electronics and Automation, Faculty of Technical Sciences, University of Warmia and Mazury, Oczapowskiego 11, Olsztyn 10-082, Poland
| | - Wojciech Maksymowicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| |
Collapse
|
15
|
McDonnell EE, Wilson N, Barcellona MN, Ní Néill T, Bagnall J, Brama PAJ, Cunniffe GM, Darwish SL, Butler JS, Buckley CT. Preclinical to clinical translation for intervertebral disc repair: Effects of species-specific scale, metabolism, and matrix synthesis rates on cell-based regeneration. JOR Spine 2023; 6:e1279. [PMID: 37780829 PMCID: PMC10540833 DOI: 10.1002/jsp2.1279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Jessica Bagnall
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Pieter A. J. Brama
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Gráinne M. Cunniffe
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- National Orthopaedic HospitalDublinIreland
- St Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
16
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
17
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
18
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
19
|
Peng B, Du L, Zhang T, Chen J, Xu B. Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration. Biomater Sci 2023; 11:1981-1993. [PMID: 36734099 DOI: 10.1039/d2bm01862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.
Collapse
Affiliation(s)
- Bing Peng
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lilong Du
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Tongxing Zhang
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China.
| | - Baoshan Xu
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| |
Collapse
|
20
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Xiao L, Gao D, Zhang Y, Liu C, Yin Z. Codelivery of TGF-β1 and anti-miR-141 by PLGA microspheres inhibits progression of intervertebral disc degeneration. J Orthop Surg Res 2023; 18:17. [PMID: 36609253 PMCID: PMC9817358 DOI: 10.1186/s13018-023-03501-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cervical and lumbar pain is usually caused by degeneration of the nucleus pulposus (NP). As a powerful therapeutic strategy, tissue engineering can effectively restore the normal biological properties of the spinal unit. Previous studies suggested that poly(lactic-co-glycolic acid) (PLGA) microspheres are effective carriers of cells and biomolecules in NP tissue engineering. This study aims to explore the therapeutic effect of PLGA microspheres coloaded with transforming growth factor-β1 (TGF-β1) and anti-miR-141 on intervertebral disc degeneration (IDD). METHODS PLGA microspheres were characterized by scanning electron microscopy, a laser particle size analyzer, and laser confocal microscopy. The in vitro release rate of biomolecules from the microspheres was analyzed by reversed-phase high-performance liquid chromatography and agarose gel electrophoresis. The rat NP cells (NPCs) treated with the solutions released from microspheres for different lengths of time were assigned to a control group (Ctrl), an empty PLGA microsphere group (Mock microsphere, MS), a TGF-β1-loaded PLGA microsphere group (TMS), an anti-miR-141-loaded PLGA microsphere group (AMS), and an anti-miR-141 + TGF-β1-loaded PLGA microsphere group (ATMS). The proliferation and apoptosis of NPCs were observed by alamar blue and flow cytometry. The gene and protein expression of cartilage markers COL2A1 and ACAN were observed by RT-qPCR and Western blot. The rat model of IDD was established by tail puncture. Rats were divided into a control group (Ctrl), a mock operation group (Mock), a TGF-β1 microsphere group (TMS), an anti-miR-141 microsphere group (AMS), and an anti-miR-141 + TGF-β1 microsphere group (ATMS). The degree of rat tail IDD was assessed in each group through magnetic resonance imaging (MRI), safranin O-fast green staining, immunohistochemistry, and Western blotting. RESULTS PLGA microspheres were stably coloaded and could sustainably release TGF-β1 and anti-miR-141. The results of in vitro cell experiments showed that the release solution of PLGA microspheres significantly enhanced the proliferation of NPCs without inducing their apoptosis and significantly upregulated cartilage markers in NPCs. The effect of microspheres was greater in the ATMS group than that in the TMS group and AMS group. In vivo experiments showed that IDD could be effectively inhibited and reversed by adding microspheres coloaded with TGF-β1 and/or anti-miR-141, and the effect was greatest in the ATMS group. CONCLUSION PLGA microspheres coloaded with TGF-β1 and anti-miR-141 can reverse IDD by inhibiting the degeneration of NPCs.
Collapse
Affiliation(s)
- Liang Xiao
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Daokuan Gao
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Yu Zhang
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Chen Liu
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Zongsheng Yin
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei, 230022 Anhui China
| |
Collapse
|
22
|
Li W, Zhou P, Yan B, Qi M, Chen Y, Shang L, Guan J, Zhang L, Mao Y. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J Tissue Eng 2023; 14:20417314231180050. [PMID: 37427012 PMCID: PMC10328174 DOI: 10.1177/20417314231180050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Modulating a favorable inflammatory microenvironment that facilitates the recovery of degenerated discs is a key strategy in the treatment of intervertebral disc (IVD) degeneration (IDD). More interestingly, well-mechanized tissue-engineered scaffolds have been proven in recent years to be capable of sensing mechanical transduction to enhance the proliferation and activation of nucleus pulposus cells (NPC) and have demonstrated an increased potential in the treatment and recovery of degenerative discs. Additionally, existing surgical procedures may not be suitable for IDD treatment, warranting the requirement of new regenerative therapies for the restoration of disc structure and function. In this study, a light-sensitive injectable polysaccharide composite hydrogel with excellent mechanical properties was prepared using dextrose methacrylate (DexMA) and fucoidan with inflammation-modulating properties. Through numerous in vivo experiments, it was shown that the co-culture of this composite hydrogel with interleukin-1β-stimulated NPCs was able to promote cell proliferation whilst preventing inflammation. Additionally, activation of the caveolin1-yes-associated protein (CAV1-YAP) mechanotransduction axis promoted extracellular matrix (ECM) metabolism and thus jointly promoted IVD regeneration. After injection into an IDD rat model, the composite hydrogel inhibited the local inflammatory response by inducing macrophage M2 polarization and gradually reducing the ECM degradation. In this study, we propose a fucoidan-DexMA composite hydrogel, which provides an attractive approach for IVD regeneration.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- Department of Orthopedics, Lixin County
People’s Hospital, Bozhou, China
| | - Pinghui Zhou
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Bomin Yan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Meiyao Qi
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yedan Chen
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| |
Collapse
|
23
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
24
|
Yang L, Yu C, Fan X, Zeng T, Yang W, Xia J, Wang J, Yao L, Hu C, Jin Y, Zhu Y, Chen J, Hu Z. Dual-dynamic-bond cross-linked injectable hydrogel of multifunction for intervertebral disc degeneration therapy. J Nanobiotechnology 2022; 20:433. [PMID: 36182921 PMCID: PMC9526989 DOI: 10.1186/s12951-022-01633-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Developing smart hydrogels with integrated and suitable properties to treat intervertebral disc degeneration (IVDD) by minimally invasive injection is of high desire in clinical application and still an ongoing challenge. In this work, an extraordinary injectable hydrogel PBNPs@OBG (Prussian blue nanoparticles@oxidized hyaluronic acid/borax/gelatin) with promising antibacterial, antioxidation, rapid gelation, and self-healing characteristics was designed via dual-dynamic-bond cross-linking among the oxidized hyaluronic acid (OHA), borax, and gelatin. The mechanical performance of the hydrogel was studied by dynamic mechanical analysis. Meanwhile, the swelling ratio and degradation level of the hydrogel was explored. Benefiting from its remarkable mechanical properties, sufficient tissue adhesiveness, and ideal shape-adaptability, the injectable PBNPs containing hydrogel was explored for IVDD therapy. Astoundingly, the as-fabricated hydrogel was able to alleviate H2O2-induced excessive ROS against oxidative stress trauma of nucleus pulposus, which was further revealed by theoretical calculations. Rat IVDD model was next established to estimate therapeutic effect of this PBNPs@OBG hydrogel for IVDD treatment in vivo. On the whole, combination of the smart multifunctional hydrogel and nanotechnology-mediated antioxidant therapy can serve as a fire-new general type of therapeutic strategy for IVDD and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Tianni Zeng
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Hangzhou, 310007, People's Republic of China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Yang Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
25
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
26
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
27
|
Du Y, Li J, Tang X, Liu Y, Bian G, Shi J, Zhang Y, Zhao B, Zhao H, Sui K, Xi Y. The Thermosensitive Injectable Celecoxib-Loaded Chitosan Hydrogel for Repairing Postoperative Intervertebral Disc Defect. Front Bioeng Biotechnol 2022; 10:876157. [PMID: 35837544 PMCID: PMC9274121 DOI: 10.3389/fbioe.2022.876157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Percutaneous endoscopic lumbar discectomy has been widely used in clinical practice for lumbar spine diseases. But the postoperative disc re-herniation and inflammation are the main reason for pain recurrence after surgery. The postoperative local defect of the intervertebral disc will lead to the instability of the spine, further aggravating the process of intervertebral disc degeneration. In this work, we successfully synthesized the thermosensitive injectable celecoxib-loaded chitosan hydrogel and investigated its material properties, repair effect, biocompatibility, and histocompatibility in in vitro and in vivo study. In vitro and in vivo, the hydrogel has low toxicity, biodegradability, and good biocompatibility. In an animal experiment, this composite hydrogel can effectively fill local tissue defects to maintain the stability of the spine and delay the process of intervertebral disc degeneration after surgery. These results indicated that this composite hydrogel will be a promising way to treat postoperative intervertebral disc disease in future clinical applications.
Collapse
Affiliation(s)
- Yukun Du
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianyi Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yingying Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Guoshuai Bian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Jianzhuang Shi
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Yixin Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Health Care Ward III, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baomeng Zhao
- Department of Surgery teaching and research, Binzhou Medical University, Yantai, China
| | - Hongri Zhao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
- *Correspondence: Kunyan Sui, ; Yongming Xi,
| | - Yongming Xi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Kunyan Sui, ; Yongming Xi,
| |
Collapse
|
28
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
29
|
Abstract
Purpose of Review Pain presents a unique challenge due to the complexity of the biological pathways involved in the pain perception, the growing concern regarding the use of opioid analgesics, and the limited availability of optimal treatment options. The use of biomaterials and regenerative medicine in pain management is being actively explored and showing exciting progress in improving the efficacy of conventional pharmacotherapy and as novel non-pharmacological therapy for chronic pain caused by degenerative diseases. In this paper we review current clinical applications, and promising research in the use of biomaterials and regenerative medicine in pain management. Recent Findings Regenerative therapies have been developed to repair damaged tissues in back, joint, and shoulder that lead to chronic and inflammatory pain. Novel regenerative biomaterials have been designed to incorporate biochemical and physical pro-regenerative cues that augment the efficacy of regenerative therapies. New biomaterials improve target localization with improved tunability for controlled drug delivery, and injectable scaffolds enhance the efficacy of regenerative therapies through improving cellular migration. Advanced biomaterial carrier systems have been developed for sustained and targeted delivery of analgesic agents to specific tissues and organs, showing improved treatment efficacy, extended duration of action, and reduced dosage. Targeting endosomal receptors by nanoparticles has shown promising anti-nociception effects. Biomaterial scavengers are designed to remove proinflammatory reactive oxygen species that trigger nociceptors and cause pain hypersensitivity, providing a proactive approach for pain management. Summary Pharmacotherapy remains the method of choice for pain management; however, conventional analgesic agents are associated with adverse effects. The relatively short duration of action when applied as free drug limited their efficacy in postoperative and chronic pain treatment. The application of biomaterials in pain management is a promising strategy to improve the efficacy of current pharmacotherapy through sustained and targeted delivery of analgesic agents. Regenerative medicine strategies target the damaged tissue and provide non-pharmacological alternatives to manage chronic and inflammatory pain. In the future, the successful development of regenerative therapies that completely repair damaged tissues will provide a more optimal alternative for the treatment of chronic pain caused. Future studies will leverage on the increasing understanding of the molecular mechanisms governing pain perception and transmission, injury response and tissue regeneration, and the development of new biomaterials and tissue regenerative methods.
Collapse
|
30
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
31
|
Yang L, Li Z, Ouyang Y. Taurine attenuates ER stress‑associated apoptosis and catabolism in nucleus pulposus cells. Mol Med Rep 2022; 25:172. [PMID: 35315493 PMCID: PMC8971911 DOI: 10.3892/mmr.2022.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleus pulposus (NP) apoptosis and subsequent excessive degradation of the extracellular matrix (ECM) are key pathological characteristics of intervertebral disc degeneration (IDD). The present study aims to examine the signaling processes underlying the effects of taurine on IDD, with specific focus on endoplasmic reticulum (ER) stress-mediated apoptosis and ECM degradation, in NP cells. To clarify the role of taurine in IDD, NP cells were treated with various concentrations of taurine and IL-1β or thapsigargin (TG). Cell Counting Kit-8, western blotting, TUNEL, immunofluorescence assays and reverse transcription-quantitative PCR were applied to measure cell viability, the expression of ER stress-associated proteins (GRP78, CHOP and caspase-12), apoptosis and the levels of metabolic factors associated with ECM (MMP-1, 3, 9, ADAMTS-4, 5 and collagen II), respectively. Taurine was found to attenuate ER stress and prevent apoptosis in NP cells induced by IL-1β treatment. Additionally, taurine significantly decreased the expression of ER stress-activated glucose regulatory protein 78, C/EBP homologous protein and caspase-12. TUNEL results revealed that taurine decreased the number of apoptotic TG-treated NP cells. TG-treated NP cells also exhibited characteristics of increased ECM degradation, supported by observations of increased MMP-1, MMP-3, MMP-9 and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 expression in addition to decreased collagen-II expression. However, taurine treatment significantly reversed all indicators of excessive ECM catabolism aforementioned. These data suggest that taurine can mediate protection against apoptosis and ECM degradation in NP cells by inhibiting ER stress, implicating therapeutic potential for the treatment of IDD.
Collapse
Affiliation(s)
- Liuxie Yang
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Zhenhuan Li
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Yueping Ouyang
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
32
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
33
|
McDonnell EE, Buckley CT. Consolidating and re-evaluating the human disc nutrient microenvironment. JOR Spine 2022; 5:e1192. [PMID: 35386756 PMCID: PMC8966889 DOI: 10.1002/jsp2.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Despite exciting advances in regenerative medicine, cell-based strategies for treating degenerative disc disease remain in their infancy. To maximize the potential for successful clinical translation, a more thorough understanding of the in vivo microenvironment is needed to better determine and predict how cell therapies will respond when administered in vivo. Aims This work aims to reflect on the in vivo nutrient microenvironment of the degenerating IVD through consolidating what has already been measured together with investigative in silico models. Materials and Methods This work uses in silico modeling, underpinned by more recent experimentally determined parameters of degeneration and nutrient transport from the literature, to re-evaluate the current knowledge in terms of grade-specific stages of degeneration. Results Through modeling only the metabolically active cell population, this work predicts slightly higher glucose concentrations compared to previous in silico models, while the predicted results show good agreement with previous intradiscal pH and oxygen measurements. Increasing calcification with degeneration limits nutrient transport into the IVD and initiates a build-up of acidity; however, its effect is compensated somewhat by a reduction in diffusional distance due to decreasing disc height. Discussion This work advances in silico modeling through a strong foundation of experimentally determined grade-specific input parameters. Taken together, pre-existing measurements and predicted results suggest that metabolite concentrations may not be as critically low as commonly believed, with calcification not appearing to have a detrimental effect at stages of degeneration when cell therapies are an appropriate intervention. Conclusion Overall, our initiative is to provoke greater deliberation and consideration of the nutrient microenvironment when performing in vitro cell culture and cell therapy development. This work highlights urgency for robust experimental glucose measurements in healthy and degenerating IVDs, not only to validate in silico models but to significantly advance the field in fully elucidating the nutrient microenvironment and refining in vitro techniques to accelerate clinical translation.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
34
|
Inhibition of IRE1 Suppresses the Catabolic Effect of IL-1β on Nucleus Pulposus Cell and Prevents Intervertebral Disc Degeneration in vivo. Biochem Pharmacol 2022; 197:114932. [DOI: 10.1016/j.bcp.2022.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
|
35
|
Lazarus E, Bermudez-Lekerika P, Farchione D, Schofield T, Howard S, Mambetkadyrov I, Lamoca M, Rivero IV, Gantenbein B, Lewis CL, Wuertz-Kozak K. Sulfated Hydrogels in Intervertebral Disc and Cartilage Research. Cells 2021; 10:cells10123568. [PMID: 34944076 PMCID: PMC8700363 DOI: 10.3390/cells10123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Hydrogels are commonly used for the 3D culture of musculoskeletal cells. Sulfated hydrogels, which have seen a growing interest over the past years, provide a microenvironment that help maintain the phenotype of chondrocytes and chondrocyte-like cells and can be used for sustained delivery of growth factors and other drugs. Sulfated hydrogels are hence valuable tools to improve cartilage and intervertebral disc tissue engineering. To further advance the utilization of these hydrogels, we identify and summarize the current knowledge about different sulfated hydrogels, highlight their beneficial effects in cartilage and disc research, and review the biofabrication processes most suitable to secure best quality assurance through deposition fidelity, repeatability, and attainment of biocompatible morphologies.
Collapse
Affiliation(s)
- Emily Lazarus
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (E.L.); (I.V.R.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Daniel Farchione
- Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA;
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Taylor Schofield
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Sloan Howard
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Iskender Mambetkadyrov
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Iris V. Rivero
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (E.L.); (I.V.R.)
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Christopher L. Lewis
- Department of Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14632, USA;
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
- Schoen Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), 81547 Munich, Germany
- Correspondence: ; Tel.: +1-585-475-7355
| |
Collapse
|
36
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Xing H, Zhang Z, Mao Q, Wang C, Zhou Y, Zhou X, Ying L, Xu H, Hu S, Zhang N. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnology 2021; 19:264. [PMID: 34488795 PMCID: PMC8419940 DOI: 10.1186/s12951-021-00991-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Exosome therapy is a promising therapeutic approach for intervertebral disc degeneration (IVDD) and achieves its therapeutic effects by regulating metabolic disorders, the microenvironment and cell homeostasis with the sustained release of microRNAs, proteins, and transcription factors. However, the rapid clearance and disruption of exosomes are the two major challenges for the application of exosome therapy in IVDD. Herein, a thermosensitive acellular extracellular matrix (ECM) hydrogel coupled with adipose-derived mesenchymal stem cell (ADSC) exosomes (dECM@exo) that inherits the superior properties of nucleus pulposus tissue and ADSCs was fabricated to ameliorate IVDD. This thermosensitive dECM@exo hydrogel system can provide not only in situ gelation to replenish ECM leakage in nucleus pulposus cells (NPCs) but also an environment for the growth of NPCs. In addition, sustained release of ADSC-derived exosomes from this system regulates matrix synthesis and degradation by regulating matrix metalloproteinases (MMPs) and inhibits pyroptosis by mitigating the inflammatory response in vitro. Animal results demonstrated that the dECM@exo hydrogel system maintained early IVD microenvironment homeostasis and ameliorated IVDD. This functional system can serve as a powerful platform for IVD drug delivery and biotherapy and an alternative therapy for IVDD. ![]()
Collapse
Affiliation(s)
- Hongyuan Xing
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Zengjie Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Youlong Zhou
- Department of Orthopedics, Changxing People's Hospital, Changxing, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Haibin Xu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Shaojun Hu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Ning Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
38
|
He S, Fu Y, Yan B, Tan H, Li H, Li J, Huang D, Huang Z, Lai J, Feng H, Sun Z, Lan Z. Curcumol Alleviates the Inflammation of Nucleus Pulposus Cells via the PI3K/Akt/NF-κB Signaling Pathway and Delays Intervertebral Disk Degeneration. World Neurosurg 2021; 155:e402-e411. [PMID: 34450323 DOI: 10.1016/j.wneu.2021.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intervertebral disk degeneration (IVDD) is closely associated with inflammatory environments. Curcumol has been shown to alleviate inflammation in various disease models, but its effects on IVDD remain unclear. In this study, we sought to determine the mechanism of curcumol in tumor necrosis factor (TNF)-α-induced nucleus pulposus cells and a mouse IVDD model. METHODS Nucleus pulposus cells were pretreated with curcumol and then exposed to TNF-α. Cell viability was analyzed using CCK-8, and the messenger ribonucleic acid and protein levels of inflammatory cytokines and PI3K/Akt/NF-κB-related signaling molecules were detected using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. The mouse IVDD model was established by puncturing the C6/7 level of the caudal spine, and then it was treated with curcumol after surgery. Alcian blue/orange G staining was performed to evaluate the severity of intervertebral disk damage, and immunohistochemistry was performed to detect the expression of TNF-α. Toxicologic effects of curcumol were measured by performing hematoxylin-eosin staining and enzyme-linked immunosorbent assay. RESULTS Curcumol reduced IL-1β, IL-6, and TNF-α production in NPCs, and the phosphorylation of proteins in the PI3K/Akt/NF-κB signaling pathway was also decreased. The PI3K/Akt/NF-κB-related signaling molecules decreased when TNF-α-induced NPCs were treated with a PI3K inhibitor; however, curcumol did not reverse these effects. In vivo, curcumol ameliorated the progression of IVDD at the early stage and did not exert toxicologic effects. CONCLUSIONS These results suggest a potential therapeutic use of curcumol to alleviate inflammation via the PI3K/Akt/NF-κB signaling pathway and delay the progression of IVDD.
Collapse
Affiliation(s)
- Shenghua He
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuanfei Fu
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bona Yan
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huangsheng Tan
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Haokang Li
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jin Li
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Dan Huang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhuohan Huang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Juyi Lai
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hualong Feng
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhitao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiming Lan
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
39
|
Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater 2021; 6:3541-3556. [PMID: 33842740 PMCID: PMC8022111 DOI: 10.1016/j.bioactmat.2021.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate-e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AF, annulus fibrosus
- Col I–S, collagen type I solution
- DAF, decellularized annulus fibrosus
- DAF-G, decellularized annulus fibrosus hydrogel
- DAF-S, decellularized annulus fibrosus solution
- DNP, decellularized nucleus pulposus
- DNP-G, decellularized nucleus pulposus hydrogel
- DNP-S, decellularized nucleus pulposus solution
- DTM, decellularized tissue matrix
- Decellularized tissue matrix
- Differentiation
- ECM, extracellular matrix
- FAF, fresh annulus fibrosus
- FNP, fresh nucleus pulposus
- IDD, intervertebral disc degeneration
- Intervertebral disc
- MSC, mesenchymal stem cell
- NP, nucleus pulposus
- Tissue specificity
- YAP1
- YAP1, yes-associated protein 1
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Zilong Rao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Daping Quan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China,Corresponding author. School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|