1
|
Bracher S, Voumard B, Simon M, Kochetkova T, Pretterklieber M, Zysset P. Bone collagen tensile properties of the aging human proximal femur. Bone Rep 2024; 21:101773. [PMID: 38778833 PMCID: PMC11109327 DOI: 10.1016/j.bonr.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the dominant role of bone mass in osteoporotic fractures, aging bone tissue properties must be thoroughly understood to improve osteoporosis management. In this context, collagen content and integrity are considered important factors, although limited research has been conducted on the tensile behavior of demineralized compact bone in relation to its porosity and elastic properties in the native mineralized state. Therefore, this study aims (i) at examining the age-dependency of mineralized bone and collagen micromechanical properties; (ii) to test whether, and if so to which extent, collagen properties contribute to mineralized bone mechanical properties. Two cylindrical cortical bone samples from fresh frozen human anatomic donor material were extracted from 80 proximal diaphyseal sections from a cohort of 24 female and 19 male donors (57 to 96 years at death). One sample per section was tested in uniaxial tension under hydrated conditions. First, the native sample was tested elastically (0.25 % strain), and after demineralization, up to failure. Morphology and composition of the second specimen was assessed using micro-computed tomography, Raman spectroscopy, and gravimetric methods. Simple and multiple linear regression were employed to relate morphological, compositional, and mechanical variables with age and sex. Macro-tensile properties revealed that only elastic modulus of native samples was age dependent whereas apparent elastic modulus was sex dependent (p < 0.01). Compositional and morphological analysis detected a weak but significant age and sex dependency of relative mineral weight (r = -0.24, p < 0.05) and collagen disorder ratio (I∼1670/I∼1640, r = 0.25, p < 0.05) and a strong sex dependency of bone volume fraction while generally showing consistent results in mineral content assessment. Young's modulus of demineralized bone was significantly related to tissue mineral density and Young's modulus of native bone. The results indicate that mechanical properties of the organic phase, that include collagen and non-collagenous proteins, are independent of donor age. The observed reduction in relative mineral weight and corresponding overall stiffer response of the collagen network may be caused by a reduced number of mineral-collagen connections and a lack of extrafibrillar and intrafibrillar mineralization that induces a loss of waviness and a collagen fiber pre-stretch.
Collapse
Affiliation(s)
- Stefan Bracher
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Mathieu Simon
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Tatiana Kochetkova
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Michael Pretterklieber
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
2
|
Alijani H, Vaughan TJ. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model. J Mech Behav Biomed Mater 2024; 153:106471. [PMID: 38458079 DOI: 10.1016/j.jmbbm.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
3
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Does tissue fixation change the mechanical properties of dry ovine bone extracellular matrix? J Mech Behav Biomed Mater 2024; 150:106294. [PMID: 38128472 DOI: 10.1016/j.jmbbm.2023.106294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| |
Collapse
|
4
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Tensile Mechanical Properties of Dry Cortical Bone Extracellular Matrix: A Comparison Among Two Osteogenesis Imperfecta and One Healthy Control Iliac Crest Biopsies. JBMR Plus 2023; 7:e10826. [PMID: 38130764 PMCID: PMC10731133 DOI: 10.1002/jbm4.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic, collagen-related bone disease that increases the incidence of bone fractures. Still, the origin of this brittle mechanical behavior remains unclear. The extracellular matrix (ECM) of OI bone exhibits a higher degree of bone mineralization (DBM), whereas compressive mechanical properties at the ECM level do not appear to be inferior to healthy bone. However, it is unknown if collagen defects alter ECM tensile properties. This study aims to quantify the tensile properties of healthy and OI bone ECM. In three transiliac biopsies (healthy n = 1, OI type I n = 1, OI type III n = 1), 23 microtensile specimens (gauge dimensions 10 × 5 × 2 μm3) were manufactured and loaded quasi-statically under tension in vacuum condition. The resulting loading modulus and ultimate strength were extracted. Interestingly, tensile properties in OI bone ECM were not inferior compared to controls. All specimens revealed a brittle failure behavior. Fracture surfaces were graded according to their mineralized collagen fibers (MCF) orientation into axial, mixed, and transversal fracture surface types (FST). Furthermore, tissue mineral density (TMD) of the biopsy cortices was extracted from micro-computed tomogra[hy (μCT) images. Both FST and TMD are significant factors to predict loading modulus and ultimate strength with an adjusted R 2 of 0.556 (p = 2.65e-05) and 0.46 (p = 2.2e-04), respectively. The influence of MCF orientation and DBM on the mechanical properties of the neighboring ECM was further verified with quantitative polarized Raman spectroscopy (qPRS) and site-matched nanoindentation. MCF orientation and DBM were extracted from the qPRS spectrum, and a second mechanical model was developed to predict the indentation modulus with MCF orientation and DBM (R 2 = 67.4%, p = 7.73e-07). The tensile mechanical properties of the cortical bone ECM of two OI iliac crest biopsies are not lower than the one from a healthy and are primarily dependent on MCF orientation and DBM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| | - Daniele Casari
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children‐Canada, Department of Pediatric SurgeryMcGill UniversityMontrealQCCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| |
Collapse
|
6
|
Kochetkova T, Hanke MS, Indermaur M, Groetsch A, Remund S, Neuenschwander B, Michler J, Siebenrock KA, Zysset P, Schwiedrzik J. Composition and micromechanical properties of the femoral neck compact bone in relation to patient age, sex and hip fracture occurrence. Bone 2023; 177:116920. [PMID: 37769956 DOI: 10.1016/j.bone.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I∼1660/I∼1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p < 0.0001). Site-matched microscale analysis confirmed that all investigated mechanical properties except yield strain demonstrate a positive correlation with the mineral fraction of bone. The output database is the first to integrate the experimentally assessed microscale yield properties, local tissue composition and morphology with the available patient clinical information. The final dataset was used for bone fracture risk prediction in-silico through the principal component analysis and the Naïve Bayes classification algorithm. The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar yield stress are the most relevant parameters for bone fracture risk prediction at 70 % model accuracy (0.71 AUC). Due to the low number of samples, further studies to build a universal fracture prediction algorithm are anticipated with the higher number of patients (N > 200). The proposed classification algorithm together with the output dataset of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease.
Collapse
Affiliation(s)
- Tatiana Kochetkova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| | - Markus S Hanke
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Michael Indermaur
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Alexander Groetsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Stefan Remund
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Beat Neuenschwander
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Klaus A Siebenrock
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| |
Collapse
|
7
|
Groetsch A, Stelzl S, Nagel Y, Kochetkova T, Scherrer NC, Ovsianikov A, Michler J, Pethö L, Siqueira G, Nyström G, Schwiedrzik J. Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202470. [PMID: 36449596 DOI: 10.1002/smll.202202470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.
Collapse
Affiliation(s)
- Alexander Groetsch
- Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland
| | - Samuel Stelzl
- Research Group 3D Printing and Biofabrication Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria
| | - Yannick Nagel
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Tatiana Kochetkova
- Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland
| | - Nadim C Scherrer
- Bern University of Applied Sciences, HKB, Bern, 3027, Switzerland
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland
| | - Laszlo Pethö
- Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf, 8600, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Jakob Schwiedrzik
- Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland
| |
Collapse
|
8
|
Momot KI. Hydrated Collagen: Where Physical Chemistry, Medical Imaging, and Bioengineering Meet. J Phys Chem B 2022; 126:10305-10316. [PMID: 36473185 DOI: 10.1021/acs.jpcb.2c06217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well-known that collagen is the most abundant protein in the human body; however, what is not often appreciated is its fascinating physical chemistry and molecular physics. In this Perspective, we aim to expose some of the physicochemical phenomena associated with the hydration of collagen and to examine the role collagen's hydration water plays in determining its biological function as well as applications ranging from radiology to bioengineering. The main focus is on the Magic-Angle Effect, a phenomenon observed in Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) of anisotropic collagenous tissues such as articular cartilage and tendon. While the effect has been known in NMR and MRI for decades, its exact molecular mechanism remains a topic of debate and continuing research in scientific literature. We survey some of the latest research aiming to develop a comprehensive molecular-level model of the Magic-Angle Effect. We also touch on other fields where understanding of collagen hydration is important, particularly nanomechanics and mechanobiology, biomaterials, and piezoelectric sensors.
Collapse
Affiliation(s)
- Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
9
|
Kochetkova T, Groetsch A, Indermaur M, Peruzzi C, Remund S, Neuenschwander B, Bellon B, Michler J, Zysset P, Schwiedrzik J. Assessing minipig compact jawbone quality at the microscale. J Mech Behav Biomed Mater 2022; 134:105405. [DOI: 10.1016/j.jmbbm.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
10
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
11
|
A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue. J Mech Behav Biomed Mater 2022; 129:105139. [DOI: 10.1016/j.jmbbm.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022]
|
12
|
Shi P, Hou A, Li C, Wu X, Jia S, Cen H, Hu X, Gong H. Continuous subcutaneous insulin infusion ameliorates bone structures and mechanical properties in type 2 diabetic rats by regulating bone remodeling. Bone 2021; 153:116101. [PMID: 34245934 DOI: 10.1016/j.bone.2021.116101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
Continuous subcutaneous insulin infusion (CSII) is an intensive insulin therapy for patients with type 2 diabetes mellitus (T2DM) who have poor glycemic control, but its effect on T2DM-related bone disorder is unclear. This study described the possible mechanisms by which CSII affects bone remodeling, structures, and mechanical properties in T2DM rats. Herein, male rats (6-week-old) were assigned randomly to 4-week and 8-week administration groups, each of which included healthy control, T2DM, CSII, and Placebo groups. Then, metabolic markers, bone formation and resorption markers in serum and protein expressions of osteoclastogenesis regulators in tibias were detected. Meanwhile, microstructures, nanostructures, macro-mechanical properties, nano-mechanical properties, and mineral compositions in femurs were evaluated. 4-week later, CSII treatment restored circulatory metabolites, bone formation and resorption markers, and osteoclastogenesis regulators, improved certain bone microstructures, decreased matrix mineralization, and increased fracture toughness in T2DM rats. For 8-week group, CSII treatment restored bone formation and resorption markers, osteoclastogenesis regulators, and bone microstructures, besides improved bone mineral compositions and nanostructures, enhanced bone mechanical properties such as fracture toughness, maximum load, elastic modulus, indentation modulus and hardness. Collectively, 8-week CSII treatment is more conducive to ameliorating bone structures and mechanical properties in T2DM rats by regulating bone remodeling compared with 4-week CSII treatment, thus improving whole bone quality and providing valuable information for clinical prevention and treatment of T2DM-related bone disorders.
Collapse
Affiliation(s)
- Peipei Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Aiqi Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chenchen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
13
|
Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomater 2021; 131:403-414. [PMID: 34245895 DOI: 10.1016/j.actbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.
Collapse
|
14
|
Casari D, Kochetkova T, Michler J, Zysset P, Schwiedrzik J. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration. Acta Biomater 2021; 131:391-402. [PMID: 34175475 DOI: 10.1016/j.actbio.2021.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
A mechanistic understanding of bone fracture is indispensable for developing improved fracture risk assessment in clinics. Since bone is a hierarchically structured material, gaining such knowledge requires analysis at multiple length scales. Here, the tensile response of cortical bone is characterized at the lamellar length scale under dry and hydrated conditions with the aim of investigating the influence of bone's microstructure and hydration on its microscale strength and toughness. For individual lamellae, bone strength strongly correlates with the underlying mineralized collagen fibrils orientation and shows a 2.3-fold increase compared to the macroscale. When specimen size is increased to a few lamellae, the influence of fibril orientation and the size effect on strength are significantly reduced. These findings highlight the critical influence of defects, such as canaliculi and interlamellar interfaces, when assessing larger volumes. Hydration leads up to a 3-fold strength decrease but activates several toughening mechanisms enabling inelastic deformation. In axial specimens, toughening is seen through fibril bridging and crack kinking. In transverse specimens, water presence leads to a progressive but stable crack growth parallel to the fibril orientation, suggesting crack-tip plasticity at the fibrillar interfaces. This work offers a better understanding of the role of interfaces, porosity, and hydration in crack initiation under tensile loading, which is a crucial step towards improved clinical management of disease-related bone fractures through multiscale modeling approaches. STATEMENT OF SIGNIFICANCE: Bone features a complex hierarchical structure which gives rise to several toughening mechanisms across several length scales. To better understand bone fracture, particularly the changes associated with age and disease, it is essential to investigate bone mechanical response at different levels of its hierarchical structure. For the first time, we were able to observe the nucleation of a single crack in hydrated bone lamellae under well-controlled uniaxial tensile loading conditions. These experiments highlight the role of water, interfaces, defects, and the ratio of defect to specimen size on bone's apparent strength and toughness. Such knowledge can be used in the future to develop multiscale models enabling improved clinical management of disease-related bone fractures.
Collapse
|
15
|
Perret E, Braun O, Sharma K, Tritsch S, Muff R, Hufenus R. High-resolution 2D Raman mapping of mono- and bicomponent filament cross-sections. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Maurya AK, Parrilli A, Kochetkova T, Schwiedrzik J, Dommann A, Neels A. Multiscale and multimodal X-ray analysis: Quantifying phase orientation and morphology of mineralized turkey leg tendons. Acta Biomater 2021; 129:169-177. [PMID: 34052502 DOI: 10.1016/j.actbio.2021.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Fibrous biocomposites like bone and tendons exhibit a hierarchical arrangement of their components ranging from the macroscale down to the molecular level. The multiscale complex morphology, together with the correlated orientation of their constituents, contributes significantly to the outstanding mechanical properties of these biomaterials. In this study, a systematic road map is provided to quantify the hierarchical structure of a mineralized turkey leg tendon (MTLT) in a holistic multiscale evaluation by combining micro-Computed Tomography (micro-CT), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). We quantify the interplay of the main MTLT components with respect to highly ordered organic parts such as fibrous collagen integrating inorganic components like hydroxyapatite (HA). The microscale fibrous morphology revealing different types of porous features and their orientation was quantified based on micro-CT investigations. The quantitative analysis of the alignment of collagen fibrils and HA crystallites was established from the streak-like signal in SAXS using the Ruland approach and the broadening of azimuthal profiles of the small and wide-angle diffraction peaks. It has been in general agreement that HA crystallites are co-aligned with the nanostructure of mineralized tissue. However, we observe relatively lower degree of orientation of HA crystallites compared to the collagen fibrils, which supports the recent findings of the structural interrelations within mineralized tissues. The generic multiscale characterization approach of this study is relevant to any hierarchically structured biomaterials or bioinspired materials from the μm-nm-Å scale. Hence, it gives the basis for future structure-property relationship investigations and simulations for a wide range of hierarchically structured materials. STATEMENT OF SIGNIFICANCE: Many fibrous biocomposites such as tendon, bone, and wood possess multiscale hierarchical structures, responsible for their exceptional mechanical properties. In this study, the 3-dimensional hierarchical structure, the degree of orientation and composition of mineralized tendon extracted from a turkey leg were quantified using a multimodal X-ray based approach combining small-angle X-ray scattering and wide-angle X-ray diffraction with micro-Computed Tomography. We demonstrate that hydroxyapatite (HA) domains are co-aligned with the nanostructure of mineralized tissue. However, the lower degree of orientation of HA crystallites was observed when compared to the collagen fibrils. The generic multiscale characterization approach of this study is relevant to any hierarchically structured biomaterials or bioinspired materials from the micrometer over the nanometer to the Angström scale level.
Collapse
|
17
|
Indermaur M, Casari D, Kochetkova T, Peruzzi C, Zimmermann E, Rauch F, Willie B, Michler J, Schwiedrzik J, Zysset P. Compressive Strength of Iliac Bone ECM Is Not Reduced in Osteogenesis Imperfecta and Increases With Mineralization. J Bone Miner Res 2021; 36:1364-1375. [PMID: 33740286 PMCID: PMC8359849 DOI: 10.1002/jbmr.4286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Osteogenesis imperfecta (OI) is an inheritable, genetic, and collagen-related disorder leading to an increase in bone fragility, but the origin of its "brittle behavior" is unclear. Because of its complex hierarchical structure, bone behaves differently at various length scales. This study aims to compare mechanical properties of human OI bone with healthy control bone at the extracellular matrix (ECM) level and to quantify the influence of the degree of mineralization. Degree of mineralization and mechanical properties were analyzed under dry conditions in 12 fixed and embedded transiliac crest biopsies (control n = 6, OI type I n = 3, OI type IV n = 2, and OI type III n = 1). Mean degree of mineralization was measured by microcomputed tomography at the biopsy level and the mineral-to-matrix ratio was assessed by Raman spectroscopy at the ECM level. Both methods revealed that the degree of mineralization is higher for OI bone compared with healthy control. Micropillar compression is a novel technique for quantifying post-yield properties of bone at the ECM level. Micropillars (d = 5 μm, h = 10 μm) were fabricated using focused ion beam milling and quasi-statically compressed to capture key post-yield properties such as ultimate strength. The qualitative inspection of the stress-strain curves showed that both OI and healthy control bone have a ductile response at the ECM level. The quantitative results showed that compressive strength is not reduced in OI bone and is increasing with OI severity. Nanoindentation measurements revealed that OI bone tends to have a higher Young's modulus, hardness, and dissipated energy compared with healthy bone. Micropillar strength and indentation modulus increased linearly and significantly (p < .0001) with mineral-to-matrix ratio. In conclusion, this study indicates that compressive mechanical properties of dry OI bone at the iliac crest are not inferior to healthy control at the ECM level and increase with mineralization. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Cinzia Peruzzi
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | | | - Frank Rauch
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Bettina Willie
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
18
|
Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021; 26:922. [PMID: 33572384 PMCID: PMC7916244 DOI: 10.3390/molecules26040922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.
Collapse
Affiliation(s)
| | | | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA; (W.Q.); (S.K.)
| |
Collapse
|