1
|
Berbentea A, Ciopec M, Duteanu N, Negrea A, Negrea P, Nemeş NS, Pascu B, Svera (m. Ianasi) P, Ianăşi C, Duda Seiman DM, Muntean D, Boeriu E. Advanced Photocatalytic Degradation of Cytarabine from Pharmaceutical Wastewaters. TOXICS 2024; 12:405. [PMID: 38922085 PMCID: PMC11209206 DOI: 10.3390/toxics12060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g-1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis.
Collapse
Affiliation(s)
- Alexandra Berbentea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Nicoleta Sorina Nemeş
- Research Institute for Renewable Energies—ICER, Politehnica University Timisoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania;
| | - Bogdan Pascu
- Research Institute for Renewable Energies—ICER, Politehnica University Timisoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania;
| | - Paula Svera (m. Ianasi)
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A. P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianăşi
- Coriolan Drăgulescu’ Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| | - Daniel Marius Duda Seiman
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy Timisoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania;
| | - Delia Muntean
- Multidisciplinary Research Centre on Antimicrobial Resistance, Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Estera Boeriu
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Pola R, Grosmanová E, Pechar M, Horák D, Krunclová T, Pankrác J, Henry M, Kaňa M, Bouček J, Šefc L, Coll JL, Etrych T. Stimuli-Responsive Polymer Nanoprobes Intended for Fluorescence-Guided Surgery of Malignant Head-and-Neck Tumors and Metastases. Adv Healthc Mater 2023; 12:e2301183. [PMID: 37288946 DOI: 10.1002/adhm.202301183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Nano-sized carriers are widely studied as suitable candidates for the advanced delivery of various bioactive molecules such as drugs and diagnostics. Herein, the development of long-circulating stimuli-responsive polymer nanoprobes tailored for the fluorescently-guided surgery of solid tumors is reported. Nanoprobes are designed as long-circulating nanosystems preferably accumulated in solid tumors due to the Enhanced permeability and retention effect, so they act as a tumor microenvironment-sensitive activatable diagnostic. This study designs polymer probes differing in the structure of the spacer between the polymer carrier and Cy7 by employing pH-sensitive spacers, oligopeptide spacers susceptible to cathepsin B-catalyzed enzymatic hydrolysis, and non-degradable control spacer. Increased accumulation of the nanoprobes in the tumor tissue coupled with stimuli-sensitive release behavior and subsequent activation of the fluorescent signal upon dye release facilitated favorable tumor-to-background ratio, a key feature for fluorescence-guided surgery. The probes show excellent diagnostic potential for the surgical removal of intraperitoneal metastasis and orthotopic head and neck tumors with very high efficacy and accuracy. In addition, the combination of macroscopic resection followed by fluorescence-guided surgery using developed probes enable the identification and resection of most of the CAL33 intraperitoneal metastases with total tumor burden reduced to 97.2%.
Collapse
Affiliation(s)
- Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| | - Eliška Grosmanová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| | - Dominik Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| | - Tereza Krunclová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| | - Jan Pankrác
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00, Czech Republic
| | - Maxime Henry
- University Grenoble Alpes, Institute for Advanced Biosciences, Team Cancer Targets and Experimental Therapeutics, INSERM U1209, CNRS UMR5309, Grenoble, 38100, France
| | - Martin Kaňa
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague 5, 150 06, Czech Republic
| | - Jan Bouček
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague 5, 150 06, Czech Republic
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00, Czech Republic
| | - Jean-Luc Coll
- University Grenoble Alpes, Institute for Advanced Biosciences, Team Cancer Targets and Experimental Therapeutics, INSERM U1209, CNRS UMR5309, Grenoble, 38100, France
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 00, Czech Republic
| |
Collapse
|
3
|
Hamrang R, Moniri E, Heydarinasab A, Safaeijavan R. In vitro evaluation of copper sulfide nanoparticles decorated with folic acid/chitosan as a novel pH-sensitive nanocarrier for the efficient controlled targeted delivery of cytarabine as an anticancer drug. Biotechnol Appl Biochem 2023; 70:330-343. [PMID: 35561253 DOI: 10.1002/bab.2355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/21/2022] [Indexed: 12/07/2022]
Abstract
Nanoparticles (NPs) have gained more attention as drug delivery systems. Folic acid (FA)-chitosan (CS) conjugates, because of their biodegradability, low toxicity, and better stability, offer a pharmaceutical drug delivery tool. The aim of this work was to fabricate CuS NPs modified by CS followed by grafting FA as a nanocarrier for the delivery of cytarabine (CYT) as an anticancer drug. In this work, CuS NPs modified by CS and FA were successfully synthesized. The structural properties of the nanocarrier were characterized by using scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and Brunauer-Emmett-Teller. The adsorption mechanism of CYT by adsorption isotherms, kinetics, and thermodynamics was deliberated and modeled. The in vitro CYT release behavior for the nanocarrier was 99% and 61% at pH 5.6 and 7.4, respectively. The adsorption behavior of CYT by CuS NPs -CS-FA was well explored by pseudo-second-order kinetic and Langmuir isotherm models by the coefficient of determination (R2 > 0.99). Thermodynamic results showed that the uptake of CYT by CuS NPs-CS-FA was endothermic and spontaneous. The experimental results showed that CYT/CuS NPs -CS-FA can be proposed as an efficient nanocarrier for the targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Roya Hamrang
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Moniri
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Amir Heydarinasab
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Safaeijavan
- Department of Biochemistry and Biophysics, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
4
|
Zeng Z, Shen H, Gao W, Guo Q, Chen M, Yan X, Liu H, Ji Y. A novel biocompatible Eu-based coordination polymers of cytarabine anticancer drug: Preparation, luminescence properties and in vitro anticancer activity studies. Front Chem 2022; 10:1043810. [DOI: 10.3389/fchem.2022.1043810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we use cytarabine anticancer drug to synthesize a new rare earth complex with Europium ion. The study work is an attempt to investigate luminescence and biological properties of the Eu-based coordination polymers of cytarabine (Eu-CP-Ara) anticancer drug which have been prepared by us. Eu-CP-Ara has luminescence properties with emission centering at about 619 nm excited with 394 nm. We study cytarabine and Eu-CP-Ara in vitro cytotoxicity. Cytotoxicity of Eu-CP-Ara against lung cancer cells (A549) could even be comparable to the inhibitory effect of cytarabine ligands, showing the advantage of antitumor activity. In addition, Eu-CP-Ara showed lower cytotoxicity to normal liver cells (L02). At the same, from the CLSM images, Eu-CP-Ara has successfully entered the A549 cell. Hence, Eu-CP-Ara can be used as a potential anticancer drug. Eu-CP-Ara may be an effective strategy for the tracking cytarabine against tumours and might impart better accurate treatment effect and therapeutic efficiency.
Collapse
|
5
|
Pechar M, Pola R, Studenovský M, Bláhová M, Grosmanová E, Dydowiczová A, Filipová M, Islam R, Gao S, Fang J, Etrych T. Polymer nanomedicines with enzymatically triggered activation: A comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102597. [PMID: 36064033 DOI: 10.1016/j.nano.2022.102597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Polymer nanomedicines with anti-tumor activity should exhibit sufficient stability during systemic circulation to the target tissue; however, they should release the active drug selectively in the tumor. Thus, choice of a tumor-specific stimuli-sensitive spacer between the drug and the carrier is critical. Here, a series of polymer conjugates of anti-cancer drugs doxorubicin and pirarubicin covalently bound to copolymers based on N-(2-hydroxypropyl)methacrylamide via various enzymatically cleavable oligopeptide spacers were prepared and characterized. The highest rate of the drug release from the polymer carriers in presence of the lysosomal protease cathepsin B was determined for the copolymers with Val-Cit-Aba spacer. Copolymers containing pirarubicin were more cytotoxic and showed higher internalization rate than the corresponding doxorubicin counterparts. The conjugates containing GFLG and Val-Cit-Aba spacers exhibited the highest anti-tumor efficacy in vivo against murine sarcoma S-180, the highest rate of the enzymatically catalyzed drug release, and the highest cytotoxicity in vitro.
Collapse
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Martin Studenovský
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Markéta Bláhová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eliška Grosmanová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Aneta Dydowiczová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shanghui Gao
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
6
|
HPMA Copolymer Mebendazole Conjugate Allows Systemic Administration and Possesses Antitumour Activity In Vivo. Pharmaceutics 2022; 14:pharmaceutics14061201. [PMID: 35745774 PMCID: PMC9229042 DOI: 10.3390/pharmaceutics14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Mebendazole and other benzimidazole antihelmintics, such as albendazole, fenbendazole, or flubendazole, have been shown to possess antitumour activity, primarily due to their microtubule-disrupting activity. However, the extremely poor water-solubility of mebendazole and other benzimidazoles, resulting in very low bioavailability, is a serious drawback of this class of drugs. Thus, the investigation of their antitumour potential has been limited so far to administering repeated high doses given peroral (p.o.) or to using formulations, such as liposomes. Herein, we report a fully biocompatible, water-soluble, HPMA copolymer-based conjugate bearing mebendazole (P-MBZ; Mw 28–33 kDa) covalently attached through a biodegradable bond, enabling systemic administration. Such an approach not only dramatically improves mebendazole solubility but also significantly prolongs the half-life and ensures tumour accumulation via an enhanced permeation and retention (EPR) effect in vivo. This P-MBZ has remarkable cytostatic and cytotoxic activities in EL-4 T-cell lymphoma, LL2 lung carcinoma, and CT-26 colon carcinoma mouse cell lines in vitro, with corresponding IC50 values of 1.07, 1.51, and 0.814 µM, respectively. P-MBZ also demonstrated considerable antitumour activity in EL-4 tumour-bearing mice when administered intraperitoneal (i.p.), either as a single dose or using 3 intermittent doses. The combination of P-MBZ with immunotherapy based on complexes of IL-2 and anti-IL-2 mAb S4B6, potently stimulating activated and memory CD8+ T cells, as well as NK cells, further improved the therapeutic effect.
Collapse
|
7
|
Mahajan S, Aalhate M, Guru SK, Singh PK. Nanomedicine as a magic bullet for combating lymphoma. J Control Release 2022; 347:211-236. [PMID: 35533946 DOI: 10.1016/j.jconrel.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Hematological malignancy like lymphoma originates in lymph tissues and has a propensity to spread across other organs. Managing such tumors is challenging as conventional strategies like surgery and local treatment are not plausible options and there are high chances of relapse. The advent of novel targeted therapies and antibody-mediated treatments has proven revolutionary in the management of these tumors. Although these therapies have an added advantage of specificity in comparison to the traditional chemotherapy approach, such treatment alternatives suffer from the occurrence of drug resistance and dose-related toxicities. In past decades, nanomedicine has emerged as an excellent surrogate to increase the bioavailability of therapeutic moieties along with a reduction in toxicities of highly cytotoxic drugs. Nanotherapeutics achieve targeted delivery of the therapeutic agents into the malignant cells and also have the ability to carry genes and therapeutic proteins to the desired sites. Furthermore, nanomedicine has an edge in rendering personalized medicine as one type of lymphoma is pathologically different from others. In this review, we have highlighted various applications of nanotechnology-based delivery systems based on lipidic, polymeric and inorganic nanomaterials that address different targets for effectively tackling lymphomas. Moreover, we have discussed recent advances and therapies available exclusively for managing this malignancy.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|