1
|
Zhang X, Chen Y, Zhou S, Liu Y, Zhu S, Jia X, Lu Z, Zhang Y, Zhang W, Ye Z, Cai B, Kong L, Liu F. RNA Coating Promotes Peri-Implant Osseointegration. ACS Biomater Sci Eng 2024; 10:7030-7042. [PMID: 38943625 PMCID: PMC11558559 DOI: 10.1021/acsbiomaterials.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.
Collapse
Affiliation(s)
- Xiao Zhang
- College
of Life Sciences, Northwest University, Xi’an 710069, China
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Yicheng Chen
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Shanluo Zhou
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Ya Liu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Simin Zhu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuelian Jia
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zihan Lu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yufan Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Wenhui Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zhou Ye
- Applied
Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, S.A.R., China
| | - Bolei Cai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Fuwei Liu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Grandfield K, Binkley DM, Ay B, Liu ZM, Wang X, Davies JE. Nanoscale implant anchorage aided by cement line deposition into titanium dioxide nanotubes. J Biomed Mater Res A 2023; 111:1866-1874. [PMID: 37358344 DOI: 10.1002/jbm.a.37585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
The success of titanium dental implants relies on osseointegration, the load-bearing connection between bone tissue and the device that, in contact osteogenesis, comprises the deposition of bony cement line matrix onto the implant surface. Titanium dioxide nanotubes (NTs) are considered a promising surface for improved osseointegration, yet the mechanisms of cement line integration with such features remains elusive. Herein, we illustrate cement line deposition into NTs on the surface of titanium implants with two underlaying microstructures: a machined surface or a blasted/acid etched surface placed in the tibiae of Wistar rats. After retrieval, scanning electron microscopy of tissue reflected from the implant surface indicated minimal incursion of the cement line matrix into the NTs. To investigate this further, focused ion beam was utilized to prepare cross-sectional samples that could be characterized using scanning transmission electron microscopy. The cement line matrix covered NTs regardless of underlying microstructure, which was further confirmed by elemental analysis. In some instances, cement line infiltration into the NTs was noted, which reveals a mechanism of nanoscale anchorage. This study is the first to demonstrate cement line deposition into titanium NTs, suggesting nano-anchorage as a mechanism for the success of the NT modified surfaces in vivo.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Dakota Marie Binkley
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Birol Ay
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhen Mei Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoyue Wang
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Luo H, Diao X, Qian F, Shi W, Li K, Liu H, Wu Y, Shen J, Xin H. Fabrication of a micro/nanocomposite structure on the surface of high oxygen concentration titanium to promote bone formation. BIOMATERIALS ADVANCES 2023; 154:213631. [PMID: 37757645 DOI: 10.1016/j.bioadv.2023.213631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
This study investigated the properties of the micro/nano composite structure on the surface of high oxygen concentration titanium (HOC-Ti) after anodic oxidation modification (HOC-NT) and evaluated its biocompatibility as a dental implant material in vitro and in vivo. HOC-Ti was produced by titanium powders and rutile powders using the powder metallurgy method. Its surface was modified by anodic oxidation. After detecting the electrochemical characteristics, the surface properties of HOC-NT were investigated. MC3T3 and MLO-Y4 cells were employed to evaluate the biocompatibility of HOC-NT and cocultured to study the effects of the changes in osteocytes induced by HOC-NT on osteoblasts. While, its possible mechanism was investigated. In addition, osseointegration around the HOC-NT implant was investigated through in vivo experiments. The results showed that a unique micronano composite structure on the HOC-Ti surface with excellent hydrophilicity and suitable surface roughness was created after anodic oxidation promoted by its electrochemical characteristics. The YAP protein may play an important role in regulating bone remodeling by β-catenin and Rankl/OPG Signaling Pathways. An in vivo study also revealed an accelerated formation rate of new bone and more stable osseointegration around the HOC-NT implant. In view of all experimental results, it could be concluded that the unique morphology of HOC-NT has enhanced physicochemical and biological properties. The promotion of bone formation around implants indicated the feasibility of HOC-NT for applications in oral implants.
Collapse
Affiliation(s)
- Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fei Qian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wendi Shi
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jianghua Shen
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Jolic M, Ruscsák K, Emanuelsson L, Norlindh B, Thomsen P, Shah FA, Palmquist A. Leptin receptor gene deficiency minimally affects osseointegration in rats. Sci Rep 2023; 13:15631. [PMID: 37730735 PMCID: PMC10511412 DOI: 10.1038/s41598-023-42379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome represents a cluster of conditions such as obesity, hyperglycaemia, dyslipidaemia, and hypertension that can lead to type 2 diabetes mellitus and/or cardiovascular disease. Here, we investigated the influence of obesity and hyperglycaemia on osseointegration using a novel, leptin receptor-deficient animal model, the Lund MetS rat. Machined titanium implants were installed in the tibias of animals with normal leptin receptor (LepR+/+) and those harbouring congenic leptin receptor deficiency (LepR-/-) and were left to heal for 28 days. Extensive evaluation of osseointegration was performed using removal torque measurements, X-ray micro-computed tomography, quantitative backscattered electron imaging, Raman spectroscopy, gene expression analysis, qualitative histology, and histomorphometry. Here, we found comparable osseointegration potential at 28 days following implant placement in LepR-/- and LepR+/+ rats. However, the low bone volume within the implant threads, higher bone-to-implant contact, and comparable biomechanical stability of the implants point towards changed bone formation and/or remodelling in LepR-/- rats. These findings are corroborated by differences in the carbonate-to-phosphate ratio of native bone measured using Raman spectroscopy. Observations of hypermineralised cartilage islands and increased mineralisation heterogeneity in native bone confirm the delayed skeletal development of LepR-/- rats. Gene expression analyses reveal comparable patterns between LepR-/- and LepR+/+ animals, suggesting that peri-implant bone has reached equilibrium in healing and/or remodelling between the animal groups.
Collapse
Affiliation(s)
- Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
5
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Ivanovski S, Bartold PM, Huang Y. The role of foreign body response in peri-implantitis: What is the evidence? Periodontol 2000 2022; 90:176-185. [PMID: 35916872 PMCID: PMC9804527 DOI: 10.1111/prd.12456] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Historically, there has been broad consensus that osseointegration represents a homeostasis between a titanium dental implant and the surrounding bone, and that the crestal bone loss characteristic of peri-implantitis is a plaque-induced inflammatory process. However, this notion has been challenged over the past decade by proponents of a theory that considers osseointegration an inflammatory process characterized by a foreign body reaction and peri-implant bone loss as an exacerbation of this inflammatory response. A key difference in these two schools of thought is the perception of the relative importance of dental plaque in the pathogenesis of crestal bone loss around implants, with obvious implications for treatment. This review investigates the evidence for a persistent foreign body reaction at osseointegrated dental implants and its possible role in crestal bone loss characteristic of peri-implantitis. Further, the role of implant-related material release within the surrounding tissue, particularly titanium particles and corrosion by-products, in the establishment and progression in peri-implantitis is explored. While it is acknowledged that these issues require further investigation, the available evidence suggests that osseointegration is a state of homeostasis between the titanium implant and surrounding tissues, with little evidence that a persistent foreign body reaction is responsible for peri-implant bone loss after osseointegration is established. Further, there is a lack of evidence for a unidirectional causative role of corrosion by-products and titanium particles as possible non-plaque related factors in the etiology of peri-implantitis.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| | - Peter Mark Bartold
- School of DentistryUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yu‐Sheng Huang
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| |
Collapse
|
7
|
Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration. Acta Biomater 2022; 151:613-627. [PMID: 35995407 DOI: 10.1016/j.actbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Osteocyte network architecture is closely associated with bone turnover. The cellular mechanosensing system regulates osteocyte dendrite formation by enhancing focal adhesion. Therefore, titanium surface nanotopography might affect osteocyte network architecture and improve the peri-implant bone tissue quality, leading to strengthened osseointegration of bone-anchored implants. We aimed to investigate the effects of titanium nanosurfaces on the development of osteocyte lacunar-canalicular networks and osseointegration of dental implants. Alkaline etching created titanium nanosurfaces with anisotropically patterned dense nanospikes, superhydrophilicity, and hydroxyl groups. MLO-Y4 mouse osteocyte-like cells cultured on titanium nanosurfaces developed neuron-like dendrites with increased focal adhesion assembly and gap junctions. Maturation was promoted in osteocytes cultured on titanium nanosurfaces compared to cells cultured on machined or acid-etched micro-roughened titanium surfaces. Osteocytes cultured in type I three-dimensional collagen gels for seven days on nano-roughened titanium surfaces displayed well-developed interconnectivity with highly developed dendrites and gap junctions compared to the poor interconnectivity observed on the other titanium surfaces. Even if superhydrophilicity and hydroxyl groups were maintained, the loss of anisotropy-patterned nanospikes reduced expression of gap junction in osteocytes cultured on alkaline-etched titanium nanosurfaces. Four weeks after placing the titanium nanosurface implants in the upper jawbone of wild-type rats, osteocytes with numerous dendrites were found directly attached to the implant surface, forming well-developed lacunar-canalicular networks around the nano-roughened titanium implants. The osseointegration strength of the nano-roughened titanium implants was significantly higher than that of the micro-roughened titanium implants. These data indicate that titanium nanosurfaces promote osteocyte lacunar-canalicular network development via nanotopographical cues and strengthen osseointegration. STATEMENT OF SIGNIFICANCE: The clinical stability of bone-anchoring implant devices is influenced by the bone quality. The osteocyte network potentially affects bone quality and is established by the three-dimensional (3D) connection of neuron-like dendrites of well-matured osteocytes within the bone matrix. No biomaterials are known to regulate formation of the osteocyte network. The present study provides the first demonstration that titanium nanosurfaces with nanospikes created by alkali-etching treatment enhance the 3D formation of osteocyte networks by promoting osteocyte dendrite formation and maturation by nanotopographic cues, leading to strengthened osseointegration of titanium implants. Osteocytes attached to the titanium nanosurfaces via numerous cellular projections. The success of osteocyte regulation by nanotechnology paves the way for development of epoch-making technologies to control bone quality.
Collapse
|
8
|
Zhu M, Zhang R, Mao Z, Fang J, Ren F. Topographical biointerface regulating cellular functions for bone tissue engineering. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mingyu Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Rui Zhang
- Department of Prosthodontics Stomatology Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Zhixiang Mao
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Ju Fang
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Fuzeng Ren
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
9
|
Li N, Bai J, Wang W, Liang X, Zhang W, Li W, Lu L, Xiao L, Xu Y, Wang Z, Zhu C, Zhou J, Geng D. Facile and Versatile Surface Functional Polyetheretherketone with Enhanced Bacteriostasis and Osseointegrative Capability for Implant Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59731-59746. [PMID: 34886671 DOI: 10.1021/acsami.1c19834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Implant-associated infections and inadequate osseointegration are two challenges of implant materials in orthopedics. In this study, a lithium-ion-loaded (Li+)/mussel-inspired antimicrobial peptide (AMP) designed to improve the osseointegration and inhibit bacterial infections effectively is prepared on a polyetheretherketone (PEEK) biomaterial surface through the combination of hydrothermal treatment and mussel-inspired chemistry. The results illustrate that the multifunctional PEEK material demonstrated a great inhibitory effect on Escherichia coli and Staphylococcus aureus, which was attributed to irreversible bacterial membrane damage. In addition, the multifunctional PEEK can simultaneously upregulate the expression of osteogenesis-associated genes/proteins via the Wnt/β-catenin signaling pathway. Furthermore, an in vivo assay of an infection model revealed that the multifunctional PEEK implants killed bacteria with an efficiency of 95.03%. More importantly, the multifunctional PEEK implants accelerated the implant-bone interface osseointegration compared with pure PEEK implants in the noninfection model. Overall, this work provides a promising strategy for improving orthopedic implant materials with ideal osseointegration and infection prevention simultaneously, which may have broad application clinical prospects.
Collapse
Affiliation(s)
- Ning Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaolong Liang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Long Xiao
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215000, China
| | - Chen Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
10
|
Benalcázar Jalkh EB, Parra M, Torroni A, Nayak VV, Tovar N, Castellano A, Badalov RM, Bonfante EA, Coelho PG, Witek L. Effect of supplemental acid-etching on the early stages of osseointegration: A preclinical model. J Mech Behav Biomed Mater 2021; 122:104682. [PMID: 34311324 DOI: 10.1016/j.jmbbm.2021.104682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the effect of two surface modifications on early osseointegration parameters of conical implants in a translational pre-clinical model. MATERIALS AND METHODS Conical implants with progressive trapezoidal threads and healing chambers were evaluated consisting of two different surface conditions: 1) Implacil surface (IMP Sur), and 2) Implacil surface + Supplemental Acid-etching (IMP Sur + AE). Surface characterization comprised of the evaluation of roughness parameters (Sa, Sq and Sdr), surface energy and contact angle. Subsequently, implants were installed in the ilium crest of nine female sheep (weighing ~65 kg). Torque out, histological and histomorphometric analyses were conducted after 3 and 6 weeks in-vivo. The percentage of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO) were quantified, and the results were analyzed using a general linear mixed model analysis as function of surface treatment and time in-vivo. RESULTS Supplemental acid etching significantly increased Sa and Sq roughness parameters without compromising the surface energy or contact angle, and no significant differences with respect to Sdr. Torque-out testing yielded significantly higher values for IMP Sur + AE in comparison to the IMP Sur at 3- (62.78 ± 15 and 33.49 ± 15 N.cm, respectively) and 6-weeks (60.74 ± 15 and 39.80 ± 15 N.cm, respectively). Histological analyses depicted similar osseointegration features for both surfaces, where an intramembranous-type healing pattern was observed. At histomorphometric analyses, IMP Sur + AE implants yielded higher values of BIC in comparison to IMP Sur at 3- (40.48 ± 38 and 27.98 ± 38%, respectively) and 6-weeks (45.86 ± 38 and 34.46 ± 38%, respectively). Both groups exhibited a significant increase in %BAFO from 3 (~35%) to 6 weeks (~44%), with no significant differences between surface treatments. CONCLUSION Supplemental acid-etching and its interplay with implant thread design, positively influenced the BIC and torque-out resistance at early stages of osseointegration.
Collapse
Affiliation(s)
- Ernesto B Benalcázar Jalkh
- University of Sao Paulo - Bauru School of Dentistry, Department of Prosthodontics and Periodontology, Bauru, SP, Brazil; Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Marcelo Parra
- PhD Program in Morphological Sciences, Center of Excellence in Morphological and Surgical Studies Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Vasudev Vivekanand Nayak
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA; Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Nick Tovar
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA; Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY, USA
| | - Arthur Castellano
- Mackenzie Evangelical School of Medicine Paraná, Curitiba, Brazil; Federal University of Parana, Curitiba, Brazil
| | - Rafael M Badalov
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Estevam A Bonfante
- University of Sao Paulo - Bauru School of Dentistry, Department of Prosthodontics and Periodontology, Bauru, SP, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA; Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Marconi GD, Fonticoli L, Della Rocca Y, Rajan TS, Piattelli A, Trubiani O, Pizzicannella J, Diomede F. Human Periodontal Ligament Stem Cells Response to Titanium Implant Surface: Extracellular Matrix Deposition. BIOLOGY 2021; 10:931. [PMID: 34571808 PMCID: PMC8470763 DOI: 10.3390/biology10090931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
The major challenge for dentistry is to provide the patient an oral rehabilitation to maintain healthy bone conditions in order to reduce the time for loading protocols. Advancement in implant surface design is necessary to favour and promote the osseointegration process. The surface features of titanium dental implant can promote a relevant influence on the morphology and differentiation ability of mesenchymal stem cells, induction of the osteoblastic genes expression and the release of extracellular matrix (ECM) components. The present study aimed at evaluating the in vitro effects of two different dental implants with titanium surfaces, TEST and CTRL, to culture the human periodontal ligament stem cells (hPDLSCs). Expression of ECM components such as Vimentin, Fibronectin, N-cadherin, Laminin, Focal Adhesion Kinase (FAK) and Integrin beta-1 (ITGB1), and the osteogenic related markers, as runt related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), were investigated. Human PDLSCs cultured on the TEST implant surface demonstrated a better cell adhesion capability as observed by Scanning Electron Microscopy (SEM) and immunofluorescence analysis. Moreover, immunofluorescence and Western blot experiments showed an over expression of Fibronectin, Laminin, N-cadherin and RUNX2 in hPDLSCs seeded on TEST implant surface. The gene expression study by RT-PCR validated the results obtained in protein assays and exhibited the expression of RUNX2, ALP, Vimentin (VIM), Fibronectin (FN1), N-cadherin (CDH2), Laminin (LAMB1), FAK and ITGB1 in hPDLSCs seeded on TEST surface compared to the CTRL dental implant surface. Understanding the mechanisms of ECM components release and its regulation are essential for developing novel strategies in tissue engineering and regenerative medicine. Our results demonstrated that the impact of treated surfaces of titanium dental implants might increase and accelerate the ECM apposition and provide the starting point to initiate the osseointegration process.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| |
Collapse
|
12
|
Alipal J, Lee T, Koshy P, Abdullah H, Idris M. Evolution of anodised titanium for implant applications. Heliyon 2021; 7:e07408. [PMID: 34296002 PMCID: PMC8281482 DOI: 10.1016/j.heliyon.2021.e07408] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anodised titanium has a long history as a coating structure for implants due to its bioactive and ossified surface, which promotes rapid bone integration. In response to the growing literature on anodised titanium, this article is the first to revisit the evolution of anodised titanium as an implant coating. The review reports the process and mechanisms for the engineering of distinctive anodised titanium structures, the significant factors influencing the mechanisms of its formation, bioactivity, as well as recent pre- and post-surface treatments proposed to improve the performance of anodised titanium. The review then broadens the discussion to include future functional trends of anodised titanium, ranging from the provision of higher surface energy interactions in the design of biocomposite coatings (template stencil interface for mechanical interlock) to techniques for measuring the bone-to-implant contact (BIC), each with their own challenges. Overall, this paper provides up-to-date information on the impacts of the structure and function of anodised titanium as an implant coating in vitro and in/ex vivo tests, as well as the four key future challenges that are important for its clinical translations, namely (i) techniques to enhance the mechanical stability and (ii) testing techniques to measure the mechanical stability of anodised titanium, (iii) real-time/in-situ detection methods for surface reactions, and (iv) cost-effectiveness for anodised titanium and its safety as a bone implant coating.
Collapse
Affiliation(s)
- J. Alipal
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| | - T.C. Lee
- Department of Production and Operation Management, Faculty of Technology Management and Business, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - P. Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - H.Z. Abdullah
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - M.I. Idris
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| |
Collapse
|
13
|
Khosravi N, DaCosta RS, Davies JE. New insights into spatio-temporal dynamics of mesenchymal progenitor cell ingress during peri-implant wound healing: Provided by intravital imaging. Biomaterials 2021; 273:120837. [PMID: 33930737 DOI: 10.1016/j.biomaterials.2021.120837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022]
Abstract
Surface topography drives the success of orthopedic and dental implants placed in bone, by directing the biology occurring at the tissue-implant interface. Over the last few decades, striking advancements have been made in the development of novel implant surfaces that enhance bone anchorage to their surfaces through contact osteogenesis: the combination of the two phenomena of recruitment and migration of mesenchymal progenitor cells to the implant surface, and their differentiation into bone-forming cells. While the latter is generally understood, the mechanisms and dynamics underlying the migration and recruitment of such progenitor cells into the wound site have garnered little attention. To address this deficit, we surgically inserted metallic implants with two different surface topographies into the skulls of mice, and then employed real-time spatiotemporal microscopic monitoring of the peri-implant tissue healing to track the ingress of cells. Our results show that nano-topographically complex, in comparison to relatively smooth, implant surfaces profoundly affect recruitment of both endothelial cells, which are essential for angiogenesis, and the mesenchymal progenitor cells that give rise to the reparative tissue stroma. The latter appear concomitantly in the wound site with endothelial cells, from the vascularized areas of the periosteum, and demonstrate a proliferative "bloom" that diminishes with time, although some of these cells differentiate into important stromal cells, pericytes and osteocytes, of the reparative wound. In separate experiments we show, using trajectory plots, that the directionality of migration for both endothelial and perivascular cells can be explained by implant surface dependent release of local cytokine gradients from platelets that would become activated on the implant surfaces during initial blood contact. These findings provide new biological insights into the earliest stages of wound healing, and have broad implications in the application of putative nano-topographically complex biomaterials in many tissue types.
Collapse
Affiliation(s)
- Niloufar Khosravi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - John E Davies
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|