1
|
Shi P, Sun P, Lou C, Fang J, Zhang L, Xie B, Zhang C. Adventitial Injection of HA/SA Hydrogel Loaded With IL-33 Antibody Decreases Neointimal Hyperplasia. J Surg Res 2024; 305:107-117. [PMID: 39667249 DOI: 10.1016/j.jss.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Neointimal hyperplasia is one of the persistent complications after vascular interventions, and is the major cause of treatment failure. Interleukin-33 (IL-33) emerges as a crucial factor in many biological processes and plays an important role in vascular diseases. Adventitial injection is catching attention for its effectiveness and fewer side effects. We hypothesize that targeting IL-33 by adventitial injection can be a therapeutic method to inhibit neointimal hyperplasia. METHOD IL-33 expression was examined in human vein graft. The hydrogel was fabricated by the interaction of hyaluronic acid, sodium alginate, and CaCO3; and phosphate buffered saline (PBS) or IL-33 antibody or recombinant IL-33 was mixed within the hydrogel uniformly. A rat aortic wire injury-induced neointimal hyperplasia model was developed; rats were divided into three groups and received an adventitial injection of a hydrogel loaded with PBS or IL-33 antibody or recombinant IL-33 after wire injury. Tissues were harvested at day 21 and analyzed by histology and immunohistochemical staining. Hydrogel loaded with PBS, IL-33 antibody, or IL-33 was also used in a mouse carotid artery ligation neointimal hyperplasia model. RESULT There was a high expression of IL-33 in human vein graft neointima. Hydrogel can be successfully injected into the aortic wall and is encapsulated by the adventitia. The hydrogel could be seen beneath the adventitia after adventitial injection and was partly degraded at day 21. There was a significantly thinner neointimal thickness and less proliferation and inflammation in the IL-33 antibody group compared to the control group. On the contrary, the IL-33 group has a thicker neointima, increased proliferation, and inflammation. The mouse carotid artery ligation model showed similar results. CONCLUSIONS IL-33 plays a role in arterial neointimal hyperplasia in both human and rodent models; adventitial injection of hydrogel loaded with IL-33 antibody can effectively decrease neointimal thickness. Neutralizing IL-33 by IL-33 antibody may be a potential therapeutic method to inhibit intimal hyperplasia after vascular interventions.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Peng Sun
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China; Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbang Fang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Tjandra KC, Novriansyah R, Limijadi EKS, Kuntjoro L, Hendrianingtyas M. The effect of green mussel ( Perna viridis) shells' hydroxyapatite application on alkaline phosphatase levels in rabbit femur bone defect. F1000Res 2024; 12:631. [PMID: 38915771 PMCID: PMC11195609 DOI: 10.12688/f1000research.132881.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Non-union fractures can be prevented with bone grafts, such as hydroxyapatite made from green mussel shells. Green mussel shells contain a high percentage of HA, making them a promising alternative for bone healing. This research aims to reveal the effectiveness of green mussel shell HA as a bone substitute material and to provide knowledge for further research. METHODS This research was conducted for four months using a true experimental research method with a post-test-only control group design. This study used 36 New Zealand rabbits ( Oryctolagus cuniculus) which were divided into 9 groups: positive control, negative control, and intervention at weeks 2, 4 and 6 after the intervention. All groups were subjected to three general procedures: pre-surgery, surgery, and post-surgery. This study utilized histological evaluation and biochemical assessment, specifically measuring serum alkaline phosphatase (ALP) levels, to investigate the effects of hydroxyapatite (HA) from green mussel shells on bone healing in rabbits. RESULTS The findings demonstrated that green mussel shell HA hashad efficacy in accelerating bone healing, better than HA bovine HA i.e. green mussel shell hydroxyapatite showed superior efficacy compared to bovine hydroxyapatite in accelerating and maximizing fracture healing, as compared to the 6-week negative control group and demonstrated a significant difference ( p < 0.05). CONCLUSIONS Green mussel hydroxyapatite is proven to be able to fasten and maximize the bone healing process as fast as bovine HA, and even has higher efficacy than bovine HA.
Collapse
Affiliation(s)
- Kevin Christian Tjandra
- Kariadi General Hospital, Semarang, Indonesia
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Robin Novriansyah
- Kariadi General Hospital, Semarang, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Edward Kurnia Setiawan Limijadi
- Kariadi General Hospital, Semarang, Indonesia
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Lydia Kuntjoro
- Kariadi General Hospital, Semarang, Indonesia
- Department of Radiology, Medical Faculty, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Meita Hendrianingtyas
- Kariadi General Hospital, Semarang, Indonesia
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia
| |
Collapse
|
3
|
Liu C, Li M, Liu Z, Shi Z, Wang X, Huang F. Chitosan thermogelation and cascade mineralization via sequential CaCO 3 incorporations for wound care. Int J Biol Macromol 2024; 266:131076. [PMID: 38531522 DOI: 10.1016/j.ijbiomac.2024.131076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Physically crosslinked hydrogels have shown great potential as excellent and eco-friendly matrices for wound management. Herein, we demonstrate the development of a thermosensitive chitosan hydrogel system using CaCO3 as a gelling agent, followed by CaCO3 mineralization to fine-tune its properties. The chitosan hydrogel effectively gelled at 37 °C and above after an incubation period of at least 2 h, facilitated by the CaCO3-mediated slow deprotonation of primary amine groups on chitosan polymers. Through synthesizing and characterizing various chitosan hydrogel compositions, we found that mineralization played a key role in enhancing the hydrogels' mechanical strength, viscosity, and thermal inertia. Moreover, thorough in vitro and in vivo assessments of the chitosan-based hydrogels, whether modified with mineralization or not, demonstrated their outstanding hemostatic activity (reducing coagulation time by >41 %), biocompatibility with minimal inflammation, and biodegradability. Importantly, in vivo evaluations using a rat burn wound model unveiled a clear wound healing promotion property of the chitosan hydrogels, and the mineralized form outperformed its precursor, with a reduction of >7 days in wound closure time. This study presents the first-time utilization of chitosan/CaCO3 as a thermogelation formulation, offering a promising prototype for a new family of thermosensitive hydrogels highly suited for wound care applications.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Menghan Li
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhiyuan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
4
|
Zhang C, Wei S, Zhang L, Lou C, Fang J, Liu Y, He H, Li Z, Li J, Bai H. [Silver Ion Decreases Foreign Body Reaction and Venous Neointimal Hyperplasia through the Inhibition of Interleukin-33 Expression]. J Vasc Res 2024; 61:89-98. [PMID: 38368869 DOI: 10.1159/000536003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION Vascular prosthetic grafts are widely used in vascular surgery; however, graft infection remains a major concern. Silver-coated vascular grafts have demonstrated anti-infection properties in clinical settings; however, whether the silver irons influence foreign body reaction or neointimal hyperplasia remains unclear. METHODS Sodium alginate and hyaluronic acid (SA/HA) hydrogel patches loaded with rhodamine, with or without silver, were fabricated. Patches were implanted in the subcutaneous or abdominal cavity and inferior vena cava of rats. Samples were harvested on day 14 and examined via immunohistochemical and immunofluorescence analyses. RESULTS Silver hydrogel was found to decrease the foreign body reaction; after subcutaneous and abdominal cavity implantation in rats, the capsule was found to be thinner in the silver hydrogel group than in the control hydrogel group. The silver hydrogel group had fewer CD68-positive cells and proliferating cell nuclear antigen and interleukin-33 (IL-33) dual-positive cells than the control hydrogel group. Additionally, the silver hydrogel patch reduced the neointimal thickness after patch venoplasty in rats, and the number of IL-33- and IL-1β-positive cells was lower than that in the control patch. CONCLUSION Silver-loaded SA/HA hydrogel patches decreased the foreign body reaction and venous neointimal hyperplasia in rats by the inhibition of IL-33 expression.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbang Fang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanfeng Liu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Jing'an Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
5
|
Gao W, Shen H, Chang Y, Tang Q, Li T, Sun D. Bivalirudin-hydrogel coatings of polyvinyl chloride on extracorporeal membrane oxygenation for anticoagulation. Front Cardiovasc Med 2023; 10:1301507. [PMID: 38162136 PMCID: PMC10754995 DOI: 10.3389/fcvm.2023.1301507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Thromboembolic events associated with extracorporeal membrane oxygenation (ECMO) in clinical treatment are typical. Heparin coating has been widely employed as a surface modification strategy for ECMO tubes. However, its clinical application is often accompanied by unavoidable complications due to its mechanism of action. As a direct thrombin inhibitor with a single target, Bivalirudin (BV) has exhibited a lower incidence of adverse events and superior pharmacokinetic performance compared to heparin. Methods A gelatin methacrylate hydrogel (GelMA) coating layer with BV was successfully synthesized on polyvinyl chloride, and the drug release ratio was close to complete release within 7 days. Results and discussion Simulated extracorporeal circulation experiments using roller pumps in vitro and jugular arteriovenous bypass experiments in rabbits demonstrated its outstanding anticoagulant efficacy. The systemic anticoagulant assay proved that BV hydrogel coating does not affect the coagulation level, and reduces the risk of complications such as systemic bleeding compared to intravenous injection. BV-Coating GelMA hydrogel tube has exhibited good biocompatibility and significantly improved anticoagulant performance, making it an optimal choice for surface materials used in blood-contacting medical devices.
Collapse
Affiliation(s)
- Wenqing Gao
- Department of Cardiac Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
| | - Hechen Shen
- Department of Cardiac Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yun Chang
- Department of Cardiac Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
| | - Qin Tang
- Department of Ophthalmology, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Tong Li
- Department of Cardiac Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Di Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang X, Liu H, Geng H, Sekhar KPC, Song A, Hao J, Cui J. Biologically Derived Nanoarchitectonic Coatings for the Engineering of Hemostatic Needles. Biomacromolecules 2023; 24:5303-5312. [PMID: 37748036 DOI: 10.1021/acs.biomac.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bleeding after venipuncture could cause blood loss, hematoma, bruising, hemorrhagic shock, and even death. Herein, a hemostatic needle with antibacterial property is developed via coating of biologically derived carboxymethyl chitosan (CMCS) and Cirsium setosum extract (CsE). The rapid transition from films of the coatings to hydrogels under a wet environment provides an opportunity to detach the coatings from needles and subsequently seal the punctured site. The hydrogels do not significantly influence the healing process of the puncture site. After hemostasis, the coatings on hemostatic needles degrade in 72 h without inducing a systemic immune response. The composition of CMCS can inhibit bacteria of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus by destroying the membrane of bacteria. The hemostatic needle with good hemostasis efficacy, antibacterial property, and safety is promising for the prevention of bleeding-associated complications in practical applications.
Collapse
Affiliation(s)
- Xunhui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
7
|
Dai S, Gao Y, Duan L. Recent advances in hydrogel coatings for urinary catheters. J Appl Polym Sci 2023. [DOI: 10.1002/app.53701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Simin Dai
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| |
Collapse
|
8
|
Adventitial injection of HA/SA hydrogel loaded with PLGA rapamycin nanoparticle inhibits neointimal hyperplasia in a rat aortic wire injury model. Drug Deliv Transl Res 2022; 12:2950-2959. [PMID: 35378720 DOI: 10.1007/s13346-022-01158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
Abstract
Neointimal hyperplasia is a persistent complication after vascular interventions, and it is also the leading cause of vascular graft restenosis and failure after arterial interventions, so novel treatment methods are needed to treat this complication. We hypothesized that adventitial injection of HA/SA hydrogel loaded with PLGA rapamycin nanoparticle (hydrogel-PLGA-rapamycin) could inhibit neointimal hyperplasia in a rat aortic wire injury model. The HA/SA hydrogel was fabricated by the interaction of hyaluronic acid (HA), sodium alginate (SA), and CaCO3; and loaded with PLGA rapamycin nanoparticle or rhodamine uniformly. A SD rat aortic wire injury induced neointimal hyperplasia model was developed, the control group only received wire injury, the adventitial application group received 10 μL hydrogel-PLGA-rapamycin after wire injury, and the adventitial injection group received 10 μL hydrogel-PLGA-rapamycin injected into the aortic adventitia after wire injury. Tissues were harvested at day 21 and analyzed by histology and immunohistochemical staining. Hydrogel loaded with rhodamine can be successfully injected into the aortic adventitia and was encapsuled by the adventitia. The hydrogel could be seen beneath the adventitia after adventitial injection but was almost degraded at day 21. There was a significantly thinner neointima in the adventitial application group and adventitial injection group compared to the control group (p = 0.0009). There were also significantly fewer CD68+ (macrophages) cells (p = 0.0012), CD3+ (lymphocytes) cells (p = 0.0011), p-mTOR+ cells (p = 0.0019), PCNA+ cells (p = 0.0028) in the adventitial application and adventitial injection groups compared to the control group. The endothelial cells expressed arterial identity markers (Ephrin-B2 and dll-4) in all these three groups. Adventitial injection of hydrogel-PLGA-rapamycin can effectively inhibit neointimal hyperplasia after rat aortic wire injury. This may be a promising drug delivery method and therapeutic choice to inhibit neointimal hyperplasia after vascular interventions.
Collapse
|
9
|
Yasin A, Ren Y, Li J, Sheng Y, Cao C, Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front Bioeng Biotechnol 2022; 10:910290. [PMID: 35860333 PMCID: PMC9289781 DOI: 10.3389/fbioe.2022.910290] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronic acid (HA) is a large non-sulfated glycosaminoglycan that is the main component of the extracellular matrix (ECM). Because of its strong and diversified functions applied in broad fields, HA has been widely studied and reported previously. The molecular properties of HA and its derivatives, including a wide range of molecular weights but distinct effects on cells, moisture retention and anti-aging, and CD44 targeting, promised its role as a popular participant in tissue engineering, wound healing, cancer treatment, ophthalmology, and cosmetics. In recent years, HA and its derivatives have played an increasingly important role in the aforementioned biomedical fields in the formulation of coatings, nanoparticles, and hydrogels. This article highlights recent efforts in converting HA to smart formulation, such as multifunctional coatings, targeted nanoparticles, or injectable hydrogels, which are used in advanced biomedical application.
Collapse
Affiliation(s)
- Aqeela Yasin
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Ying Ren
- School of Materials Science and EngineeringHenan University of Technology, Zhengzhou, China
| | - Jingan Li
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Yulong Sheng
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Wang X, Wu J, Wang W, Zhang Y, He D, Xiao B, Zhang H, Song A, Xing Y, Li B. Reprogramming of Rat Fibroblasts into Induced Neurons by Small-Molecule Compounds In Vitro and In Vivo. ACS Chem Neurosci 2022; 13:2099-2109. [PMID: 35723446 DOI: 10.1021/acschemneuro.2c00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cell replacement is a promising approach for neurodegenerative disease treatment. Somatic cells such as fibroblasts can be induced to differentiate into neurons by specific transcription factors; however, the potential of viral vectors used for reprogramming to integrate into the genome raises concerns about the potential clinical applications of this approach. Here, we directly reprogrammed rat embryonic skin fibroblasts into induced neurons (iNs) via six small-molecule compounds (SMs) (VPA, CHIR99021, forskolin, Y-27632, Repsox, and P7C3-A20). iNs exhibit typical neuronal morphology, and immunofluorescence showed that more than 96% of the iNs expressed the early neuronal marker class III beta-tubulin (TUJ1) and that more than 91% of iNs expressed the mature neuronal marker neuron-specific enolase (NSE) after 10 days of reprogramming. Quantitative real-time polymerase chain reaction also showed that most iNs expressed the dopaminergic neuron marker tyrosine hydroxylase, the neural marker Nur correlation factor 1, the (γ-aminobutyric acid, GABA) GABAergic neuronal marker GABA, and the cholinergic neuron marker choline acetyltransferase. In addition, we found that cell proliferation decreased during reprogramming and that protein synthesis increased initially and then decreased. SMs were mixed with hydrogels, and the hydrogels were implanted subcutaneously into the backs of rats. After 7 days, the TUJ1 and NSE proteins were expressed in surrounding tissues, indicating that SMs caused reprogramming in vivo. In summary, rat skin fibroblasts can be efficiently reprogrammed into iNs by SMs in vitro and in vivo.
Collapse
Affiliation(s)
- Xueyun Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Jing Wu
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001 Henan, P.R. China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Yuanwang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Dixin He
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Boying Xiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Haohao Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Anqi Song
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, P.R. China
| |
Collapse
|
11
|
ADAM17: A novel treatment target for aneurysms. Biomed Pharmacother 2022; 148:112712. [DOI: 10.1016/j.biopha.2022.112712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
|
12
|
Composite Coating Prepared with Ferulic Acid to Improve the Corrosion Resistance and Blood Compatibility of Magnesium Alloy. METALS 2022. [DOI: 10.3390/met12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnesium (Mg) alloy has been used for medical vascular stents because of its good biocompatibility and degradability, but its rapid degradation and poor blood compatibility limits its further application. In this study, ferulic acid (FA) was conjugated onto the polydopamine (PDA) deposited Mg-Zn-Y-Nd alloy to prepare a PDA/FA multi-functional coating with better corrosion resistance and blood compatibility. The results suggest that the PDA/FA coating possessed potential application for surface modification of a medical Mg alloy.
Collapse
|
13
|
Zhang L, Wang W, Xie B, Sun P, Wei S, Wu H, Zhang C, Li J, Li Z, Bai H. PLGA Nanoparticle Rapamycin- or Necrostatin-1-Coated Sutures Inhibit Inflammatory Reactions after Arterial Closure in Rats. ACS APPLIED BIO MATERIALS 2022; 5:1501-1507. [PMID: 35297594 DOI: 10.1021/acsabm.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Wang Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan 450001, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Henan 450001, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| |
Collapse
|
14
|
Xie Y, Gao P, He F, Zhang C. Application of Alginate-Based Hydrogels in Hemostasis. Gels 2022; 8:109. [PMID: 35200490 PMCID: PMC8871293 DOI: 10.3390/gels8020109] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hemorrhage, as a common trauma injury and clinical postoperative complication, may cause serious damage to the body, especially for patients with huge blood loss and coagulation dysfunction. Timely and effective hemostasis and avoidance of bleeding are of great significance for reducing body damage and improving the survival rate and quality of life of patients. Alginate is considered to be an excellent hemostatic polymer-based biomaterial due to its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, easy gelation and easy availability. In recent years, alginate hydrogels have been more and more widely used in the medical field, and a series of hemostatic related products have been developed such as medical dressings, hemostatic needles, transcatheter interventional embolization preparations, microneedles, injectable hydrogels, and hemostatic powders. The development and application prospects are extremely broad. This manuscript reviews the structure, properties and history of alginate, as well as the research progress of alginate hydrogels in clinical applications related to hemostasis. This review also discusses the current limitations and possible future development prospects of alginate hydrogels in hemostatic applications.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.); (P.G.); (F.H.)
| |
Collapse
|
15
|
Nie X, Cui C, Wu T, Wu Y, Bian X, Yang R, Zhang X, Sun Y, Liu Y, Liu W. An anticoagulant/hemostatic indwelling needle for oral glucose tolerance test. Biomater Sci 2022; 10:6570-6582. [DOI: 10.1039/d2bm01133f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticoagulant/hemostatic indwelling needles developed by polydopamine co-deposition and underwater hyperbranched polymer adhesive priming monitor changes in blood glucose concentration in diabetic rats.
Collapse
Affiliation(s)
- Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Chunyan Cui
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yang Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinyu Bian
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoping Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
16
|
Bai H, Wei S, Sun P, Zhang L, Liu Y, Qiao Z, Wang W, Xie B, Zhang C, Li Z. Biomimetic Elastin Fiber Patch in Rat Aorta Angioplasty. ACS OMEGA 2021; 6:26715-26721. [PMID: 34661025 PMCID: PMC8515827 DOI: 10.1021/acsomega.1c04170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Introduction: Vascular grafts significantly contribute to advances in vascular surgery, but none of the currently available prosthetic grafts have elastin fibers similar to native arteries. We hypothesized that a novel elastin patch could be produced after a rat decellularized thoracic aorta elastin fiber scaffold is implanted subcutaneously in rats; we tested this novel elastin patch in a rat aortic arterioplasty model. Methods: Sprague-Dawley rats (200 g) were used. Rat thoracic aortae were decellularized and sectioned at a thickness of 30 μm. A single elastin fiber scaffold was fabricated as a net (5 × 5 mm2), and then a three-layer scaffold was constructed to make a new patch. The hyaluronic acid-sodium alginate (HA/SA) hydrogel was fabricated by reacting sodium SA, HA, and CaCO3, and then the hydrogel was added to the patch to secure the elastin fibers. The patches were implanted subcutaneously in rats and harvested at day 14. The elastin patches were then implanted into the same rat's aorta and harvested at day 14; a decellularized rat thoracic aorta (TA) patch was used as a control. Sections of the retrieved patches were stained by immunohistochemistry and immunofluorescence. Results: The elastin fibers could be secured by the hydrogel. After 14 days, the subcutaneously implanted elastin patch was incorporated into the rat tissue, and H&E staining showed that new tissue had formed around the elastin patch with almost no hydrogel left. After implantation into the rat aorta and then retrieval on day 14, H&E staining showed that there was neointima and adventitia formation in both the TA and elastin patch groups. Both patches showed a similar histological structure after implantation, and immunofluorescence showed that there were CD34- and nestin-positive cells in the neointima. In both groups, the endothelial cells expressed the arterial identity markers Ephrin-B2 and dll-4; almost one-third of the cells in the neointima were PCNA-positive with rare cleaved caspase-3-positive cells. Conclusion: We demonstrated a novel approach to making elastin fiber scaffold hydrogel patches (elastin patches) and tested them in a rat aorta arterioplasty model. This patch showed a similar healing process as the decellularized TA patch; it also showed potential applications in large animals and may be a substitute for prosthetic grafts in vascular surgery.
Collapse
Affiliation(s)
- Hualong Bai
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key
Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, Henan 450001, China
- or . Tel: +86 18838151596
| | - Shunbo Wei
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Peng Sun
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liwei Zhang
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanfeng Liu
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhentao Qiao
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wang Wang
- Key
Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, Henan 450001, China
- Department
of Physiology, Medical School of Zhengzhou
University, Zhengzhou, Henan 450001, China
| | - Boao Xie
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Cong Zhang
- Department
of Vascular and Endovascular Surgery, First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhuo Li
- Key
Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, Henan 450001, China
| |
Collapse
|