1
|
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering (Basel) 2024; 11:1245. [PMID: 39768063 PMCID: PMC11673930 DOI: 10.3390/bioengineering11121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
Collapse
Affiliation(s)
- Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Lauren Ann Foster
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| |
Collapse
|
2
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
3
|
Xu P, Chi J, Wang X, Zhu M, Chen K, Fan Q, Ye F, Shao C. In vitro vascularized liver tumor model based on a microfluidic inverse opal scaffold for immune cell recruitment investigation. LAB ON A CHIP 2024; 24:3470-3479. [PMID: 38896021 DOI: 10.1039/d4lc00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Liver cancer, characterized as a kind of malignant tumor within the digestive system, poses great health harm, and immune escape stands out as an important reason for its occurrence and development. Chemokines, pivotal in guiding immune cells' migration, is necessary to initiate and deliver an effective anti-tumor immune response. Therefore, understanding the chemotactic environment and identifying chemokines that regulate recruitment of immune cells to the tumor microenvironment (TME) are critical to improve current immunotherapy interventions. Herein, we report a well-defined inverse opal scaffold generated with a microfluidic emulsion template for the construction of a vascularized liver tumor model, offering insights into immune cells' recruitment. Due to the excellent 3D porous morphology of the inverse opal scaffold, human hepatocellular carcinoma cells can aggregate in the pores of the scaffold to form uniform multicellular tumor spheroids. More attractively, the vascularized liver tumor model can be achieved by constructing a 3D co-culture system involving endothelial cells and hepatocellular carcinoma cells. The results demonstrate that the 3D co-cultured tumor cells increase the neutrophil chemokines remarkably and recruit neutrophils to tumor tissues, then promote tumor progression. This approach opens a feasible avenue for realizing a vascularized liver tumor model with a reliable immune microenvironment close to that of a solid tumor of liver cancer.
Collapse
Affiliation(s)
- Pingwei Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Junjie Chi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaochen Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Changmin Shao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
4
|
van Rhijn-Brouwer FCCC, Wever KE, Kiffen R, van Rhijn JR, Gremmels H, Fledderus JO, Vernooij RWM, Verhaar MC. Systematic review and meta-analysis of the effect of bone marrow-derived cell therapies on hind limb perfusion. Dis Model Mech 2024; 17:dmm050632. [PMID: 38616715 PMCID: PMC11139036 DOI: 10.1242/dmm.050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Preclinical and clinical studies on the administration of bone marrow-derived cells to restore perfusion show conflicting results. We conducted a systematic review and meta-analysis on preclinical studies to assess the efficacy of bone marrow-derived cells in the hind limb ischemia model and identify possible determinants of therapeutic efficacy. In vivo animal studies were identified using a systematic search in PubMed and EMBASE on 10 January 2022. 85 studies were included for systematic review and meta-analysis. Study characteristics and outcome data on relative perfusion were extracted. The pooled mean difference was estimated using a random effects model. Risk of bias was assessed for all included studies. We found a significant increase in perfusion in the affected limb after administration of bone marrow-derived cells compared to that in the control groups. However, there was a high heterogeneity between studies, which could not be explained. There was a high degree of incomplete reporting across studies. We therefore conclude that the current quality of preclinical research is insufficient (low certainty level as per GRADE assessment) to identify specific factors that might improve human clinical trials.
Collapse
Affiliation(s)
| | - Kimberley Elaine Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Romy Kiffen
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jon-Ruben van Rhijn
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, 3584 CS Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joost Ougust Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robin Wilhelmus Maria Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Marianne Christina Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Chen YW, Lin YH, Lin TL, Lee KXA, Yu MH, Shie MY. 3D-biofabricated chondrocyte-laden decellularized extracellular matrix-contained gelatin methacrylate auxetic scaffolds under cyclic tensile stimulation for cartilage regeneration. Biofabrication 2023; 15:045007. [PMID: 37429300 DOI: 10.1088/1758-5090/ace5e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Three-dimensional (3D) hydrogel constructs can mimic features of the extracellular matrix (ECM) and have tailorable physicochemical properties to support and maintain the regeneration of articular cartilage. Various studies have shown that mechanical cues affect the cellular microenvironment and thereby influence cellular behavior. In this study, we fabricated an auxetic scaffold to investigate the effect of 3D tensile stimulation on chondrocyte behavior. Different concentrations of decellularized extracellular matrix (dECM) were mixed with fish gelatin methacrylate (FGelMa) and employed for the preparation of dECM/FGelMa auxetic bio-scaffolds using 3D biofabrication technology. We show that when human chondrocytes (HCs) were incorporated into these scaffolds, their proliferation and the expression of chondrogenesis-related markers increased with dECM content. The function of HC was influenced by cyclic tensile stimulation, as shown by increased production of the chondrogenesis-related markers, collagen II and glycosaminoglycans, with the involvement of the yes-associated protein 1 signaling pathway. The biofabricated auxetic scaffold represents an excellent platform for exploring interactions between cells and their mechanical microenvironment.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung City 41354, Taiwan
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Tsung-Li Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Kai-Xing Alvin Lee
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan
| | - Min-Hua Yu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
7
|
Uslu C, Narin S, Demirsoy Z, Öksüz HB, Gülseren G. Pectin hydrogels crosslinked via peptide nanofibers for designing cell-instructive dynamic microenvironment. Int J Biol Macromol 2023; 233:123604. [PMID: 36773861 DOI: 10.1016/j.ijbiomac.2023.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
As has been reported many times before, the two-dimensional (2D) cell culture techniques used today are far from modeling native tissue environments. Therefore, tremendous amounts of effort were devoted to developing three-dimensional (3D) cell cultures with high tissue resemblance. Whereas, these techniques suffer from elaborate preparation processes, batch-to-batch variations, unnatural components, chemical modifications, side products, static culture conditions, or complex reactor systems. To overcome these limitations, we report an undocumented one-step strategy to create a tissue-like 3D cell culture method by mimicking the extracellular matrix (ECM) microenvironment with rapid, non-covalent cross-linking of biopolymer-peptide complex and recently designed non-static cell culturing modules. In the current method, we prepared a very facile and tailorable ECM-like network by using easily attainable building blocks without the need for chemical modifications and possible undesirable/noncontrollable responses resulting from these unnatural modifications. Cells encapsulated in this new biopolymer mesh were located in the swimming culture module to mimic not only the microenvironment but also the non-static physical environment of the ECM. The feasibility of this method was analyzed on a bio-regeneration model; SaOS-2 cells cultured in the current 3D system induced improved osteogenic regeneration. The ECM resemblance of the method was also exhibited by histological sections of the cells incubated in the recent gel formulation. Furthermore, different cell types derived from various tissues could be cultured in our recent ECM model, which could be very practicable for personalized test models for future applications as a replacement for animal studies.
Collapse
Affiliation(s)
- Cemile Uslu
- Department of Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Sümeyye Narin
- Department of Bioengineering, Konya Food and Agriculture University, Konya 42080, Turkey
| | - Zeynep Demirsoy
- Department of Biotechnology, Konya Food and Agriculture University, Konya 42080, Turkey
| | - Hasan Basri Öksüz
- Department of Electrical and Electronics Engineering, Konya Food and Agriculture University, Konya 42080, Turkey
| | - Gülcihan Gülseren
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya 42080, Turkey; Department of Biotechnology, Konya Food and Agriculture University, Konya 42080, Turkey.
| |
Collapse
|
8
|
Lu H, Shao W, Gao B, Zheng S, He B. Intestine-inspired wrinkled MXene microneedle dressings for smart wound management. Acta Biomater 2023; 159:201-210. [PMID: 36724862 DOI: 10.1016/j.actbio.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Composite MXene-based materials are prone to crack propagation, thus limiting their tensile properties. Numerous efforts have been devoted to removing material constraints and fabricating unitary MXene elastic films. Here, for the first time, inspired by the intestinal wrinkles and villi structure, we presented a ductile, biologically friendly, and highly conductive MXene-based microneedle (MMN) dressing composed of stacked MXene film and superfine microneedle arrays through a simple stretching and laser engraving strategy for wound healing. By utilizing photothermal responsive MXene, periodic porous structures, and a temperature-responsive polymer to construct the MMN dressing, the system can act as an effective route for facilitating controllable drug delivery controlled by near-infrared (NIR) irradiation. In addition, superior conductivity imparts them with the capacity to realize continuous and steady monitoring of motion sensing. The practical performance further demonstrated that the versatile MMN dressing showed obvious therapeutic efficacy in vivo animal wound models. Thus, it is believed that MMN dressings with biomimetic structures, controllable drug release, and conductive pathways will open a new chapter for wound management and widen other practical applications in biomedical fields, such as artificial tendons and soft robotics. STATEMENT OF SIGNIFICANCE: MXene-based materials have been demonstrated as critical tools in advancing our understanding of wound healing. However, the rapid crack propagation is a constraint on their tensile properties. Here, inspired by the intestinal wrinkles and villi structure, a single-step method has also been discussed to present a MXene-based microneedle dressing composed of unitary MXene elastic film and superfine microneedle arrays. At the same time, the dressing with biomimetic structures, controllable drug release, and conductive pathways has prospects in intelligent wound management and varieties of related biomedical fields.
Collapse
Affiliation(s)
- Huihui Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wenyu Shao
- College of Biotechnology and Pharmaceutical Engineering and School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Wang J, Huang D, Ren H, Shang L. Biomimic Trained Immunity-MSCs Delivery Microcarriers for Acute Liver Failure Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200858. [PMID: 35411651 DOI: 10.1002/smll.202200858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have a demonstrated value for acute liver failure (ALF) regeneration, while their delivery stratagems with long-term biological functions, low immune response, and high biocompatibility are still a challenge. Here, a lipopolysaccharide (LPS)-loaded photoresponsive cryogel porous microcarrier (CPM) for MSCs delivery and colonization is presented to promote defect liver regeneration. The CPMs are fabricated with graphene oxide, poly(N-isopropylacrylamide), and gelatin methacrylate (GelMA) via droplet microfluidic technology and a gradient-cooling procedure. Benefitting from the biocompatible GelMA component and the porous microstructure of the CPMs, MSCs can be nondestructively captured and abundantly delivered. Because the LPS can be released from the CPMs under NIR irradiation, the delivered MSCs are imparted with the feature of "trained immunity." Thus, when the MSCs-laden CPMs are tailored into the liver matched patches by bioprinting and applied in ALF rats, they display superior anti-inflammatory and more significant liver regeneration properties than the untrained MSCs. These features make the CPMs an excellent MSCs delivery system for clinical applications in tissue repair.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, China
| | - Danqing Huang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, China
| | - Luoran Shang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
10
|
Weng W, Chi J, Wang X, Shi K, Ye F, Zhao Y. Ellipsoidal porous patch with anisotropic cell inducing ability for inhibiting skin scar formation. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Lei L, Hu Y, Shi H, Bao Z, Wu Y, Jiang J, Li X. Biofunctional peptide-click PEG-based hydrogels as 3D cell scaffolds for corneal epithelial regeneration. J Mater Chem B 2022; 10:5938-5945. [PMID: 35894700 DOI: 10.1039/d2tb00983h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels as highly promising 3D cell scaffolds have been widely implemented in the field of tissue regrowth and regeneration, yet the functionalized PEG hydrogel providing dynamic, cell-instructive microenvironments is inherently difficult to obtain. Here, we have exploited the specificity of click reaction to develop a set of hydrogels based on 4-arm PEG tetraazide (4-arm-PEG-N3) and di-propargylated peptides (GRGDG and GRDGG) with tunable physicochemical properties applicable for 3D cell scaffolds. The azide groups of PEG were reacted with the alkynyl groups of peptides, catalyzed by copper to form triazole rings, thus generating a cross-linked hydrogel. The gelation time and mechanical strength of the hydrogels varied according to the PEG/peptide feed ratio. The resulting hydrogel exhibited a typical porous microstructure and suitable swelling behavior. The in vitro cytotoxicity test indicated that the resulting hydrogels did not cause apparent cytotoxicity against human corneal epithelial cells (HCECs). After co-incubation with HCECs, the density of RGD as well as peptide sequence in the hydrogels remarkably affected the cell attachment, spreadability, and proliferation. Additionally, the proposed hydrogel showed high ocular biocompatibility after being embedded subconjunctivally into rabbit eyes. Overall, these findings highlighted that the biofunctional hydrogels formed by PEG and RGD motifs via a controllable click reaction might be promising 3D cell scaffolds for corneal epithelial regeneration.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yuhan Hu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Hui Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Zhishu Bao
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yiping Wu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Jun Jiang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| |
Collapse
|
12
|
Xu F, Zheng Z, Yao M, Zhu F, Shen T, Li J, Zhu C, Yang T, Shao M, Wan Z, Fang C. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Mater Chem B 2022; 10:6171-6180. [PMID: 35766339 DOI: 10.1039/d2tb00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell-derived decellularized extracellular matrix (dECM) plays a vital role in controlling cell functions because of its similarity to the in vivo microenvironment. In the process of stem cell differentiation, the composition of the dECM is not constant but is dynamically remolded. However, there is little information regarding the dynamic regulation by the dECM of the osteogenic differentiation of stem cells. Herein, four types of stepwise dECMs (0, 7, 14, and 21 d-ECM) were prepared from bone marrow-derived mesenchymal stem cells (BMSCs) undergoing osteogenic differentiation for 0, 7, 14, and 21 days after decellularization. In vitro experiments were designed to study the regulation of BMSC osteogenesis by dECMs. The results showed that all the dECMs could support the activity and proliferation of BMSCs but had different effects on their osteogenic differentiation. The 14d-ECM promoted the osteogenesis of BMSCs significantly compared with the other dECMs. Proteomic analysis demonstrated that the composition of dECMs changed over time. The 14d ECM had higher amounts of collagen type IV alpha 2 chain (COL4A2) than the other dECMs. Furthermore, COL4A2 was obviously enriched in the activated focal adhesion kinase (FAK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Thus, the 14d-ECM could promote the osteogenic differentiation of BMSCs, which might be related to the high content of COL4A2 in the 14d-ECM by activating the FAK/PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fei Xu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ziran Zheng
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Feiya Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Ting Shen
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Jiang Li
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Chao Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianru Yang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Mengying Shao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Changyun Fang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2022; 188:114413. [PMID: 35777666 DOI: 10.1016/j.addr.2022.114413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Various modifications have been performed on biomaterials to improve their applications in tissue engineering and regenerative medicine. However, the challenges of immunogenicity and biocompatibility existed since the application of biomaterials. As a method to solve this problem, the decellularization process removes most living cells from biomaterials to minimize their immunogenicity; and preserves the native structures and compositions that favour cell growth and the subsequent construction of functional tissue. On the other hand, genetic modification of biomaterials aims to achieve specific functions (low immunogenicity, osteogenesis, etc.) or analyse the genetic mechanisms underlying some diseases (cardiac dysfunction, liver fibrosis, etc.). The combination of decellularization and gene modification is highly superior to biomaterials; thus, we must obtain a deeper understanding of these novel biomaterials. In this review, we summarize the fabrication approaches and current applications of genetically modified decellularized biomaterials and then discuss their disadvantages and corresponding future perspectives.
Collapse
|
14
|
Später T, Assunção M, Lit KK, Gong G, Wang X, Chen YY, Rao Y, Li Y, Yiu CHK, Laschke MW, Menger MD, Wang D, Tuan RS, Khoo KH, Raghunath M, Guo J, Blocki A. Engineering microparticles based on solidified stem cell secretome with an augmented pro-angiogenic factor portfolio for therapeutic angiogenesis. Bioact Mater 2022; 17:526-541. [PMID: 35846945 PMCID: PMC9270501 DOI: 10.1016/j.bioactmat.2022.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue (re)vascularization strategies face various challenges, as therapeutic cells do not survive long enough in situ, while the administration of pro-angiogenic factors is hampered by fast clearance and insufficient ability to emulate complex spatiotemporal signaling. Here, we propose to address these limitations by engineering a functional biomaterial capable of capturing and concentrating the pro-angiogenic activities of mesenchymal stem cells (MSCs). In particular, dextran sulfate, a high molecular weight sulfated glucose polymer, supplemented to MSC cultures, interacts with MSC-derived extracellular matrix (ECM) components and facilitates their co-assembly and accumulation in the pericellular space. Upon decellularization, the resulting dextran sulfate-ECM hybrid material can be processed into MIcroparticles of SOlidified Secretome (MIPSOS). The insoluble format of MIPSOS protects protein components from degradation, while facilitating their sustained release. Proteomic analysis demonstrates that MIPSOS are highly enriched in pro-angiogenic factors, resulting in an enhanced pro-angiogenic bioactivity when compared to naïve MSC-derived ECM (cECM). Consequently, intravital microscopy of full-thickness skin wounds treated with MIPSOS demonstrates accelerated revascularization and healing, far superior to the therapeutic potential of cECM. Hence, the microparticle-based solidified stem cell secretome provides a promising platform to address major limitations of current therapeutic angiogenesis approaches. Dextran sulfate assembles with mesenchymal stem cell secretome. As a result, microparticles of solidified stem cell secretome (MIPSOS) are formed. The insoluble MIPSOS format protects proteins from premature degradation. MIPSOS are enriched in pro-angiogenic factors and exhibit gradual release kinetics. MIPSOS demonstrate superior pro-angiogenic properties and thus therapeutic potential.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwok Keung Lit
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yucong Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering (SHIAE), Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kay-Hooi Khoo
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Corresponding author. BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
- Corresponding author. School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
15
|
Xie Y, Lee K, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Interconnected collagen porous scaffolds prepared with sacrificial PLGA sponge templates for cartilage tissue engineering. J Mater Chem B 2021; 9:8491-8500. [PMID: 34553735 DOI: 10.1039/d1tb01559a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interconnected pore structures of scaffolds are important to control the cell functions for cartilage tissue engineering. In this study, collagen scaffolds with interconnected pore structures were prepared using poly(D,L-lactide-co-glycolide) (PLGA) sponges as sacrificial templates. Six types of PLGA sponges of different pore sizes and porosities were prepared by the solvent casting/particulate leaching method and used to regulate the interconnectivity of the collagen scaffolds. The integral and continuous templating structure of PLGA sponges generated well-interconnected pore structures in the collagen scaffolds. Bovine articular chondrocytes cultured in collagen scaffolds showed homogenous distribution, fast proliferation, high expression of cartilaginous genes and high secretion of cartilaginous extracellular matrix. In particular, the collagen scaffold templated by the PLGA sacrificial sponge that was prepared with a high weight ratio of PLGA and large salt particulates showed the most promotive effect on cartilage tissue formation. The interconnected pore structure facilitated cell distribution, cell-cell interaction and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kyubae Lee
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Xiuhui Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|