1
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Madadi M, Khoee S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1908. [PMID: 37271573 DOI: 10.1002/wnan.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
The advent of Janus nanoparticles has been a great breakthrough in the emerging field of nanomaterials. Janus nanoparticles refer to a single structure with two distinct chemical functions on either side. Owing to their asymmetric structures, they can be utilized in a variety of applications where monomorphic particles are insufficient. In the last decade, a wide variety of materials have been employed to fabricate Janus nanoparticles, and due to the great advantages of magnetite (Iron-oxide) NPs, they have been considered as one of the best candidates. With the main benefit of magnetic controlling, magnetite Janus nanoparticles fulfill great promises, especially in biomedical areas such as bioimaging, cancer therapies, theranostics, and biosensing. The intrinsic characteristics of magnetite Janus nanoparticles (MJNPs) even hold great potential in magnetite Janus forms of micro-/nanomotors. Despite the great interest and potential in magnetic Janus NPs, the need for a comprehensive review on MJNPs with a concentration on magnetite NPs has been overlooked. Herein, we present recent advancements in the magnetite-based Janus nanoparticles in the flourishing field of biomedicine. First, the synthesis and fabrication methods of Janus nanoparticles are discussed. Then we will delve into their intriguing biomedical applications, with a separate section for magnetite Janus micro-/nanomotors in biomedicine. And finally, the challenges and future outlook are provided. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Mozhdeh Madadi
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Zhang Z, Yan H, Cao W, Xie S, Ran P, Wei K, Li X. Ultrasound-Chargeable Persistent Luminescence Nanoparticles to Generate Self-Propelled Motion and Photothermal/NO Therapy for Synergistic Tumor Treatment. ACS NANO 2023; 17:16089-16106. [PMID: 37515593 DOI: 10.1021/acsnano.3c04906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Cancer phototherapy indicates advantages in ease of manipulation, negligible drug resistance, and spatiotemporal control but is confronted with challenges in tumor cell accessibility and intermittent light excitation. Herein, we propose a strategy with persistent luminescence (PL)-excited photothermal therapy (PTT), concurrent thermophoresis-propelled motion, and PL-triggered NO release, where PL emission is chargeable by ultrasonication for readily applicable to deep tumors. Mechanoluminescent (ML) nanodots of SrAl2O4:Eu2+ (SAOE) and PL nanodots of ZnGa2O4:Cr3+ (ZGC) were deposited on mesoporous silicates to obtain mSZ nanoparticles (NPs), followed by partially coating with polydopamine (PDA) caps and loading NO donors to prepare Janus mSZ@PDA-NO NPs. The ML emission bands of SAOE nanodots overlap with the excitation band of ZGC, and the persistent near-infrared (NIR) emission could be repeatedly activated by ultrasonication. The PL emission acts as an internal NIR source to produce a thermophoretic force and NO gas propellers to drive the motion of Janus NPs. Compared with the commonly used intermittent NIR illumination at both 660 and 808 nm, the persistent motion of ultrasound-activated NPs enhances cellular uptake and long-lasting PTT and intracellular NO levels to combat tumor cells without the use of any chemotherapeutic drugs. The ultrasound-activated persistent motion promotes intratumoral accumulation and tumor distribution of PTT/NO therapeutics and exhibits significantly higher tumor growth inhibition, longer animal survival, and larger intratumoral NO levels than those who experience external NIR illumination. Thus, this study demonstrates a strategy to activate PL emissions and construct PL-excited nanomotors for phototherapy in deep tissues.
Collapse
Affiliation(s)
- Zhanlin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Hui Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Kun Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
4
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
5
|
Development of Janus Particles as Potential Drug Delivery Systems for Diabetes Treatment and Antimicrobial Applications. Pharmaceutics 2023; 15:pharmaceutics15020423. [PMID: 36839746 PMCID: PMC9967574 DOI: 10.3390/pharmaceutics15020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.
Collapse
|
6
|
Li M, Liu J, Wang X, Wang J, Huang LH, Gao M, Zhang X. Facile Preparation of Three-Dimensional Wafer with Interconnected Porous Structure for High-Performance Capture and Nondestructive Release of Circulating Tumor Cells. Anal Chem 2022; 94:15076-15084. [PMID: 36265544 DOI: 10.1021/acs.analchem.2c03137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient isolation and downstream bioinformation analysis of circulating tumor cells (CTCs) in whole blood contribute to the early diagnosis of cancer and investigation of cancer metastasis. However, the separation and release of CTCs remain a great challenge due to the extreme rarity of CTCs and severe interference from other cells in complex clinical samples. Herein, we developed a low-cost and easy-to-fabricate aptamer-functionalized wafer with a three-dimensional (3D) interconnected porous structure by grafting polydopamine (PDA), poly(ethylene glycol) (PEG), and aptamer in sequence (Ni@PDA-PEG-Apt) for the capture and release of CTCs. The Ni@PDA-PEG-Apt wafer integrated the features of Ni foam with a 3D interconnected porous structure offering enough tunnels for cells to flow through and enhancing aptamer-cell contact frequency, the spacer PEG with flexible and high hydrophilic property increasing anti-interference ability and providing the wafer with more binding sites for aptamer, which result in an enhanced capture specificity and efficiency for CTCs. Because of these advantages, the Ni@PDA-PEG-Apt wafer achieved a high capture efficiency of 78.25%. The captured cancer cells were mildly released by endonuclease with up to 61.85% efficiency and good proliferation. Furthermore, tumor cells were injected into mice and experienced circulation in vivo. In blood samples after circulation, 65% of target tumor cells can be efficiently captured by the wafer, followed by released and recultured cells with high viability. Further downstream metabolomics analysis showed that target cancer cells remained with high biological activity and can be well separated from MCF-10A cells based on metabolic profiles by the PCA analysis, indicating the great potential of our strategy for further research on the progression of cancer metastasis. Notably, not only is the wafer cheap with a cost of only 3.58 U.S. dollars and easily prepared by environmental-friendly reagents but also the process of capturing and releasing tumor cells can be completed within an hour, which is beneficial for large-scale clinical use in the future.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Jia Liu
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Xuantang Wang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Jiaxi Wang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Li-Hao Huang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Indexed: 05/23/2023]
Abstract
Metal phosphorus-based nanomaterials (Metal-P NMs) including metal phosphate nanomaterials, metal phosphide nanomaterials, and metal-black phosphorus (Metal-BP) nanocomposite are widely used in the field of biomedicine owing to their excellent physical and chemical properties, biocompatibility, and biodegradability. In recent years, metal phosphate nanomaterials and Metal-BP nanocomposite acted as medicine delivery system have made breakthroughs in tumor diagnosis including magnetic resonance imaging, fluorescence imaging, photoacoustic imaging, nuclear imaging, and therapies including chemotherapy, gene therapy, photothermal therapy, photodynamic therapy, and radiation therapy. Metal phosphate nanomaterials have good biodegradability, especially calcium-based metal phosphate nanomaterials can be dissolved into nontoxic ions and participate in the metabolisms of normal organs. Compared with metal phosphate nanomaterials, metal phosphide nanomaterials have excellent optical, magnetic, and catalytic properties, which can be used as multifunctional diagnostic nanoplatforms and therapeutic agents for chemodynamic therapy, photothermal therapy, or immunotherapy. The latest developments in Metal-P NMs, covering the range of preparation methods and biological applications, such as serving as drug carriers, tumor diagnosis, and therapy, are focused. All in all, the current trends, key issues, future prospects and challenges of Metal-P NMs are concluded and discussed, which are important for the development of this research field and shining more lights on this direction.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|