1
|
Josephson TO, Morgan EF. Mechanobiological optimization of scaffolds for bone tissue engineering. Biomech Model Mechanobiol 2024; 23:2025-2042. [PMID: 39060881 DOI: 10.1007/s10237-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Synthetic bone graft scaffolds aim to generate new bone tissue and alleviate the limitations of autografts and allografts. To meet that aim, it is essential to have a design approach able to generate scaffold architectures that will promote bone formation. Here, we present a topology-varying design optimization method, the "mixed-topology" approach, that generates new designs from a set of starting structures. This approach was used with objective functions focusing on improving the scaffold's local mechanical microenvironments to mechanobiologically promote bone formation within the scaffold and constraints to ensure manufacturability and achieve desired macroscale properties. The results demonstrate that this approach can successfully generate scaffold designs with improved microenvironments, taking into account different combinations of relevant stimuli and constraints.
Collapse
Affiliation(s)
- Timothy O Josephson
- Biomedical Engineering, Boston University, Boston, MA, USA.
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA.
| | - Elise F Morgan
- Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA
- Mechanical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Kalogeropoulou M, Kracher A, Fucile P, Mihăilă SM, Moroni L. Blueprints of Architected Materials: A Guide to Metamaterial Design for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408082. [PMID: 39370588 DOI: 10.1002/adma.202408082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Mechanical metamaterials are rationally designed structures engineered to exhibit extraordinary properties, often surpassing those of their constituent materials. The geometry of metamaterials' building blocks, referred to as unit cells, plays an essential role in determining their macroscopic mechanical behavior. Due to their hierarchical design and remarkable properties, metamaterials hold significant potential for tissue engineering; however their implementation in the field remains limited. The major challenge hindering the broader use of metamaterials lies in the complexity of unit cell design and fabrication. To address this gap, a comprehensive guide is presented detailing the design principles of well-established metamaterials. The essential unit cell geometric parameters and design constraints, as well as their influence on mechanical behavior, are summarized highlighting essential points for effective fabrication. Moreover, the potential integration of artificial intelligence techniques is explored in meta-biomaterial design for patient- and application-specific design. Furthermore, a comprehensive overview of current applications of mechanical metamaterials is provided in tissue engineering, categorized by tissue type, thereby showcasing the versatility of different designs in matching the mechanical properties of the target tissue. This review aims to provide a valuable resource for tissue engineering researchers and aid in the broader use of metamaterials in the field.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Anna Kracher
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Pierpaolo Fucile
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
3
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
He Y, Wang Q, Liu Y, Zhang Z, Cao Z, Wang S, Ying X, Ma G, Wang X, Liu H. Composite Mineralized Collagen/Polycaprolactone Scaffold-Loaded Microsphere System with Dual Osteogenesis and Antibacterial Functions. Polymers (Basel) 2024; 16:2394. [PMID: 39274026 PMCID: PMC11397082 DOI: 10.3390/polym16172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds with bilayer-structured microspheres with dual antibacterial and osteogenesis functions. The different drug release mechanisms of PLGA and chitosan in PLGA/CS microspheres caused differences in the drug release models in terms of the duration and rate of Pac-525 and BMP-2 release. The prepared PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffolds were analyzed in terms of physical characteristics, bioactivity, and antibacterial properties. The scaffolds with a dimensional porous structure showed similar porosity and pore diameter to cancellous bone. The release curve of the microspheres and scaffolds with high encapsulation rates displayed the two-stage release of Pac-525 and BMP-2 over 30 days. It was found that the scaffolds could inhibit S. aureus and E. coli and then promote ALP activity. The PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffold could be used as a dual delivery system to promote bone regeneration.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Qindong Wang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuqi Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zijiao Zhang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Xiao P, Schilling C, Wang X. Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. J Funct Biomater 2024; 15:239. [PMID: 39194677 DOI: 10.3390/jfb15080239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Understanding bone surface curvatures is crucial for the advancement of bone material design, as these curvatures play a significant role in the mechanical behavior and functionality of bone structures. Previous studies have demonstrated that bone surface curvature distributions could be used to characterize bone geometry and have been proposed as key parameters for biomimetic microstructure design and optimization. However, understanding of how bone surface curvature distributions correlate with bone microstructure and mechanical properties remains limited. This study hypothesized that bone surface curvature distributions could be used to predict the microstructure as well as mechanical properties of trabecular bone. To test the hypothesis, a convolutional neural network (CNN) model was trained and validated to predict the histomorphometric parameters (e.g., BV/TV, BS, Tb.Th, DA, Conn.D, and SMI), geometric parameters (e.g., plate area PA, plate thickness PT, rod length RL, rod diameter RD, plate-to-plate nearest neighbor distance NNDPP, rod-to-rod nearest neighbor distance NNDRR, plate number PN, and rod number RN), as well as the apparent stiffness tensor of trabecular bone using various bone surface curvature distributions, including maximum principal curvature distribution, minimum principal curvature distribution, Gaussian curvature distribution, and mean curvature distribution. The results showed that the surface curvature distribution-based deep learning model achieved high fidelity in predicting the major histomorphometric parameters and geometric parameters as well as the stiffness tenor of trabecular bone, thus supporting the hypothesis of this study. The findings of this study underscore the importance of incorporating bone surface curvature analysis in the design of synthetic bone materials and implants.
Collapse
Affiliation(s)
- Pengwei Xiao
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Caroline Schilling
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Kupai K, Kang HL, Pósa A, Csonka Á, Várkonyi T, Valkusz Z. Bone Loss in Diabetes Mellitus: Diaporosis. Int J Mol Sci 2024; 25:7269. [PMID: 39000376 PMCID: PMC11242219 DOI: 10.3390/ijms25137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to examine the connection between osteoporosis and diabetes, compare the underlying causes of osteoporosis in various forms of diabetes, and suggest optimal methods for diagnosing and assessing fracture risk in diabetic patients. This narrative review discusses the key factors contributing to the heightened risk of fractures in individuals with diabetes, as well as the shared elements impacting the treatment of both diabetes mellitus and osteoporosis. Understanding the close link between diabetes and a heightened risk of fractures is crucial in effectively managing both conditions. There are several review articles of meta-analysis regarding diaporosis. Nevertheless, no review articles showed collected and well-organized medications of antidiabetics and made for inconvenient reading for those who were interested in details of drug mechanisms. In this article, we presented collected and comprehensive charts of every antidiabetic medication which was linked to fracture risk and indicated plausible descriptions according to research articles.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Hsu Lin Kang
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6725 Szeged, Hungary;
| | - Tamás Várkonyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| | - Zsuzsanna Valkusz
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| |
Collapse
|
7
|
Griesbach JK, Schulte FA, Schädli GN, Rubert M, Müller R. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Acta Biomater 2024; 179:149-163. [PMID: 38492908 DOI: 10.1016/j.actbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Bone can adapt its microstructure to mechanical loads through mechanoregulation of the (re)modeling process. This process has been investigated in vivo using time-lapsed micro-computed tomography (micro-CT) and micro-finite element (FE) analysis using surface-based methods, which are highly influenced by surface curvature. Consequently, when trying to investigate mechanoregulation in tissue engineered bone constructs, their concave surfaces make the detection of mechanoregulation impossible when using surface-based methods. In this study, we aimed at developing and applying a volumetric method to non-invasively quantify mechanoregulation of bone formation in tissue engineered bone constructs using micro-CT images and FE analysis. We first investigated hydroxyapatite scaffolds seeded with human mesenchymal stem cells that were incubated over 8 weeks with one mechanically loaded and one control group. Higher mechanoregulation of bone formation was measured in loaded samples with an area under the curve for the receiver operating curve (AUCformation) of 0.633-0.637 compared to non-loaded controls (AUCformation: 0.592-0.604) during culture in osteogenic medium (p < 0.05). Furthermore, we applied the method to an in vivo mouse study investigating the effect of loading frequencies on bone adaptation. The volumetric method detected differences in mechanoregulation of bone formation between loading conditions (p < 0.05). Mechanoregulation in bone formation was more pronounced (AUCformation: 0.609-0.642) compared to the surface-based method (AUCformation: 0.565-0.569, p < 0.05). Our results show that mechanoregulation of formation in bone tissue engineered constructs takes place and its extent can be quantified with a volumetric mechanoregulation method using time-lapsed micro-CT and FE analysis. STATEMENT OF SIGNIFICANCE: Many efforts have been directed towards optimizing bone scaffolds for tissue growth. However, the impact of the scaffolds mechanical environment on bone growth is still poorly understood, requiring accurate assessment of its mechanoregulation. Existing surface-based methods were unable to detect mechanoregulation in tissue engineered constructs, due to predominantly concave surfaces in scaffolds. We present a volumetric approach to enable the precise and non-invasive quantification and analysis of mechanoregulation in bone tissue engineered constructs by leveraging time-lapsed micro-CT imaging, image registration, and finite element analysis. The implications of this research extend to diverse experimental setups, encompassing culture conditions, and material optimization, and investigations into bone diseases, enabling a significant stride towards comprehensive advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Julia K Griesbach
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Friederike A Schulte
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland.
| |
Collapse
|
8
|
Schamberger B, Ehrig S, Dechat T, Spitzer S, Bidan CM, Fratzl P, Dunlop JWC, Roschger A. Twisted-plywood-like tissue formation in vitro. Does curvature do the twist? PNAS NEXUS 2024; 3:pgae121. [PMID: 38590971 PMCID: PMC10999733 DOI: 10.1093/pnasnexus/pgae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Little is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days. Using 3D fluorescence microscopy, the influence of surface curvature on actin stress-fiber alignment and chirality was investigated. To gain mechanistic insights, we did experiments with MC3T3-E1 cells deficient in nuclear A-type lamins or treated with drugs targeting cytoskeleton proteins. We find that wild-type cells form a thick tissue with fibers predominantly aligned along directions of negative curvature, but exhibiting a twist in orientation with respect to older tissues. Fiber orientation is conserved below the tissue surface, thus creating a twisted-plywood-like material. We further show that this alignment pattern strongly depends on the structural components of the cells (A-type lamins, actin, and myosin), showing a role of mechanosensing on tissue organization. Our data indicate the importance of substrate curvature in the formation of 3D tissues and provide insights into the emergence of chirality.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Ehrig
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Thomas Dechat
- Ludwig Boltzmann Institute of Osteology of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Silvia Spitzer
- Ludwig Boltzmann Institute of Osteology of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
9
|
He L, Zhao M, Cheung JPY, Zhang T, Ren X. Gaussian random field-based characterization and reconstruction of cancellous bone microstructure considering the constraint of correlation structure. J Mech Behav Biomed Mater 2024; 152:106443. [PMID: 38308976 DOI: 10.1016/j.jmbbm.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The macro scale physical properties of cancellous bone materials are governed by the microstructural features, which is of great significance for the multi-scale research of cancellous bone and the inverse design of bone-mimicking materials. Therefore, it is essential to characterize the natural cancellous bone samples, and reconstruct the microstructures with the biomimetic osteointegration and mechanical properties. In this research, a novel approach for the characterization and reconstruction of cancellous bone was proposed, based on the medical image analysis and anisotropic three-dimensional Gaussian random field (GRF). The geometric similarity, i.e. the interface curvature distribution (ISD), was meticulously studied, which is important to the osteointegration ability. And the mechanical properties were validated by the stress-strain curves under the large compressive strain simulated by the smoothed particle hydrodynamic (SPH) method. In addition, the effects of the generation parameters of GRF-based biomimetic microstructures on the apparent properties were analyzed. The ISD results demonstrated that both GRF and micro-CT groups had the similar columnar morphological properties, while the latter had more hyperbolic features. And it was found that the GRF-based biomimetic microstructures and the natural bone samples based on micro-CT (MCT) had the similar failure mode. The concordance correlation coefficient between MCT and GRF pairs was 0.8685, with a Pearson ρ value of 0.8804, and significance level p<0.0001. The Bland-Altman LoA was 0.1647 MPa with 95 % (1.96SD) lower and upper bound value between -0.2892 and 0.6185 MPa. The two groups had almost the same elastic modulus with the mean absolute percentage error (MAPE) of 7.84 %. While the yield stress and total conversion energy of the GRF-based samples were lower than those of the natural bone samples, and the MAPE were 16.99 % and 16.27 %, respectively. Although it meant the lower structural efficiency, the huge design space of this approach and advanced 3D printing technology can provide great potential for the design of orthopedic implants.
Collapse
Affiliation(s)
- Lei He
- College of Civil Engineering, Tongji University, Shanghai, China
| | - Moxin Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Teng Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xiaodan Ren
- College of Civil Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Vafaeefar M, Moerman KM, Vaughan TJ. Experimental and computational analysis of energy absorption characteristics of three biomimetic lattice structures under compression. J Mech Behav Biomed Mater 2024; 151:106328. [PMID: 38184929 DOI: 10.1016/j.jmbbm.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
The objective of this study is to evaluate the mechanical properties and energy absorption characteristics of the gyroid, dual-lattice and spinodoid structures, as biomimetic lattices, through finite element analysis and experimental characterisation. As part of the study, gyroid and dual-lattice structures at 10% volume fraction were 3D-printed using an elastic resin, and mechanically tested under uniaxial compression. Computational models were calibrated to the observed experimental data and the response of higher volume fraction structures were simulated in an explicit finite element solver. Stress-strain data of groups of lattices at different volume fractions were studied and energy absorption parameters including total energy absorbed per unit volume, energy absorption efficiency and onset of densification strain were calculated. Also, the structures were characterized into bending-dominant and stretch-dominant structures, according to their nodal connectivity and Gibson-and-Ashby's law. The results of the study showed that the dual-lattice is capable of absorbing more energy at each volume fraction cohort. However, gyroid structures showed higher energy absorption efficiency and the onset of densification at higher strains. The spinodoid structure was found to be the poorest structure in terms of energy absorption, specifically at low volume fractions. Also, the results showed that the dual-lattice was a stretch dominated structure, while the gyroid structure was a bending dominated structure, which may be a reason that it is a better candidate for energy absorption applications.
Collapse
Affiliation(s)
- Mahtab Vafaeefar
- Biomechanics Research Centre (BMEC), School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Kevin M Moerman
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
11
|
Ozanne H, Moubri L, Abou-Nassif L, Thoumire O, Echalard A, Morin-Grognet S, Atmani H, Ladam G, Labat B. Active Osteoblasts or Quiescent Bone Lining Cells? Preosteoblasts Fate Orchestrated by Curvature and Stiffness of an In Vitro 2.5D Biomimetic Culture System. Adv Healthc Mater 2024; 13:e2302222. [PMID: 37929897 DOI: 10.1002/adhm.202302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 11/07/2023]
Abstract
Biomimetic cell culture systems are required to provide more physiologically relevant microenvironments for bone cells. Here, a simple 2.5D culture platform is proposed, combining adjustable stiffness and surface features that mimic bone topography by using sandpaper grits as master molds with two stiffness formulations of polydimethylsiloxane (PDMS). The subsequent replicas perfectly conform the grits and reproduce the corresponding negative relief with cavities separated by convex edges. Biomimicry is also provided by an extracellular matrix (ECM)-like thin film coating, using the layer-by-layer (LbL) method. The topographical features, alternating concave, and convex structures drive preosteoblasts organization and morphology. Strikingly, curvature orchestrates the commitment of preosteoblasts, with i) maturation to active osteoblasts able to produce a dense collagenous matrix that ultimately mineralizes in the cavities, and ii) edges hosting quiescent cells that synthetize a very thin immature collagen layer with no mineralization. In summary, the present in vitro culture system model offers a cell-instructive 2.5D microenvironment that controls preosteoblasts fate, leading to two coexisting subpopulations: mature osteoblasts and bone lining cells (BLC). This promising culture system opens new avenues to advanced tissue-engineered modeling and can be applied to precellularized bone biomaterials.
Collapse
Affiliation(s)
- Hélène Ozanne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Loïc Moubri
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Léa Abou-Nassif
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Olivier Thoumire
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Aline Echalard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | | | - Hassan Atmani
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| |
Collapse
|
12
|
Smotrova E, Li S, Silberschmidt VV. Trabecula-level mechanoadaptation: Numerical analysis of morphological changes. Comput Biol Med 2024; 168:107720. [PMID: 38006828 DOI: 10.1016/j.compbiomed.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Bone is a living material that, unlike man-made ones, demonstrates continuous adaptation of its structure and mechanical properties to resist the imposed mechanical loading. Adaptation in trabecular bone is characterised by improvement of its stiffness in the loading direction and respective realignment of trabecular load-bearing architecture. Considerable experimental and simulation evidence of trabecular bone adaptation to its mechanical environment at the tissue- and organ-levels was obtained, while little attention was given to the trabecula-level of this process. This study aims to describe and classify load-driven morphological changes at the level of individual trabeculae and to propose their drivers. METHOD For this purpose, a well-established mechanoregulation-based numerical model of bone adaptation was implemented in a user-defined subroutine that changed the structural and mechanical properties of trabeculae based on the magnitude of a mechanical stimulus. This subroutine was used in conjunction with finite-element models of variously shaped structures representing trabeculae loaded in compression or shear. RESULTS In all analysed cases, trabeculae underwent morphological evolution under applied compressive or shear loading. Among twelve cases analysed, six main mechanisms of morphological evolution were established: reorientation, splitting, merging, full resorption, thinning, and thickening. Moreover, all simulated cases presented the ability to reduce the mean value of von Mises stress while increasing their ability to resist compressive/shear loading during adaptation. CONCLUSION This study evaluated morphological and mechanical changes in trabeculae of different shapes in response to compressive or shear loadings and compared them based on the analysis of von Mises stress distribution as well as profiles of normal and shear stresses in the trabeculae at different stages of their adaptation.
Collapse
Affiliation(s)
- Ekaterina Smotrova
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK; Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, 614000, Russia.
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
13
|
Biomechanical properties and clinical significance of cancellous bone in proximal femur: A review. Injury 2023:S0020-1383(23)00251-6. [PMID: 36922271 DOI: 10.1016/j.injury.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Trabecular bone plays an important role in the load-bearing capacity of the femur. Understanding the structural characteristics, biomechanics, and mechanical conduction of the trabecular bone is of great value in studying the mechanism of fractures and formulating surgical plans. The past decade has witnessed unprecedented progress in imaging, biomechanics and finite element analysis techniques, translating into a better understanding of trabecular bone. This article reviews the research progress achieved over the years regarding femoral trabecular bone, especially on factors influencing the strength of the proximal femoral cancellous bone and cancellous bone microfractures and provides a comprehensive overview of the latest findings on proximal femoral trabecular bone and their clinical significance.
Collapse
|
14
|
Callens SJP, Fan D, van Hengel IAJ, Minneboo M, Díaz-Payno PJ, Stevens MM, Fratila-Apachitei LE, Zadpoor AA. Emergent collective organization of bone cells in complex curvature fields. Nat Commun 2023; 14:855. [PMID: 36869036 PMCID: PMC9984480 DOI: 10.1038/s41467-023-36436-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands. .,Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Daniel Fan
- Department of Precision and Microsystems Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Ingmar A J van Hengel
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands.,Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
15
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
16
|
Vafaeefar M, Moerman KM, Kavousi M, Vaughan TJ. A morphological, topological and mechanical investigation of gyroid, spinodoid and dual-lattice algorithms as structural models of trabecular bone. J Mech Behav Biomed Mater 2023; 138:105584. [PMID: 36436405 DOI: 10.1016/j.jmbbm.2022.105584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
In this study, we evaluate the performance of three algorithms as computational models of trabecular bone architecture, through systematic evaluation of morphometric, topological, and mechanical properties. Here, we consider the widely-used gyroid lattice structure, the recently-developed spinodoid structure and a structure similar to Voronoi lattices introduced here as the dual-lattice. While all computational models were calibrated to recreate the trabecular tissue volume (e.g. BV/TV), it was found that both the gyroid- and spinodoid-based structures showed substantial differences in many other morphometric and topological parameters and, in turn, showed lower effective mechanical properties compared to trabecular bone. The newly-developed dual-lattice structures better captured both morphometric parameters and mechanical properties, despite certain differences being evident their topological configuration compared to trabecular bone. Still, these computational algorithms provide useful platforms to investigate trabecular bone mechanics and for designing biomimetic structures, which could be produced through additive manufacturing for applications that include bone substitutes, scaffolds and porous implants. Furthermore, the software for the creation of the structures has been added to the open source toolbox GIBBON and is therefore freely available to the community.
Collapse
Affiliation(s)
- Mahtab Vafaeefar
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Kevin M Moerman
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Majid Kavousi
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
17
|
Yan Z, Hu Y, Shi H, Wang P, Liu Z, Tian Y, Zhuang Z. Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method. J Mech Behav Biomed Mater 2023; 138:105643. [PMID: 36603525 DOI: 10.1016/j.jmbbm.2022.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Traditional experimental tests for characterizing bone's mechanical properties usually hypothesize a uniaxial stress condition without quantitatively evaluating the influence of spatially varying principal material orientations, which cannot accurately predict the mechanical properties distribution of bones in vivo environment. In this study, a Bayesian calibrating procedure was developed using quantified multiaxial stress to investigate cancellous bone's local anisotropic elastic performance around joints as the spatial variation of main bearing orientations. First, the bone cube specimens from the distal femur of sheep are prepared using traditional anatomical axes. The multiaxial stress state of each bone specimen is calibrated using the actual principal material orientations derived from fabric tensor at different anatomical locations. Based on the calibrated multiaxial stress state, the process of identifying mechanical properties is described as an inverse problem. Then, a Bayesian calibration procedure based on a surrogate constitutive model was developed via multiaxial stress correction to identify the anisotropic material parameters. Finally, a comparison between the experiment and simulation results is discussed by applying the optimal model parameters obtained from the Bayesian probability distribution. Compared to traditional uniaxial methods, our results prove that the calibration based on the spatial variation of the main bearing orientations can significantly improve the accuracy of characterizing regional anisotropic mechanical responses. Moreover, we determine that the actual mechanical property distribution is influenced by complicated mechanical stimulation. This study provides a novel method to evaluate the spatially varying mechanical properties of bone tissues enduring complex mechanical loading accurately and effectively. It is expected to provide more realistic mechanical design targets in vivo for a personalized artificial bone prosthesis in clinical treatment.
Collapse
Affiliation(s)
- Ziming Yan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Huibin Shi
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Peng Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Zhanli Liu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China.
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhuo Zhuang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
19
|
Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A 2022; 119:e2206684119. [PMID: 36191194 PMCID: PMC9564829 DOI: 10.1073/pnas.2206684119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent β-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.
Collapse
|
20
|
Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater 2022; 134:105370. [PMID: 35872461 DOI: 10.1016/j.jmbbm.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
This computational study addresses new biomimetic load-bearing implants designed to treat long bone critical-sized defects in a proximal diaphysis region. The design encompasses two strategies: a Haversian bone-mimicking approach for cortical bone and lattices based on triply periodic minimal surfaces (TPMS) for trabecular bone. Compression tests are modeled computationally via a non-linear finite element analysis with Ti6Al4V alloy as a base material. Nine topologies resembling cortical bone are generated as hollow cylinders with different channel arrangements simulating Haversian (longitudinal) and Volkmann (transverse) canals to achieve properties like those of a human cortical bone (Strategy I). Then, the selected optimal structure from Strategy I is merged with the trabecular bone part represented by four types of TPMS-based lattices (Diamond, Primitive, Split-P, and Gyroid) with the same relative density to imitate the whole bone structure. The Strategy I resulted in finding a hollow cylinder including Haversian and Volkmann canals, optimized in canals number, shape, and orientation to achieve mechanical behavior close to human cortical bone. The surface area and volume created by such canals have the maximum values among all studied combinations of transverse and longitudinal channels. Strategy II reveals the effect of interior design on the load-bearing capacity of the whole component. Between four types of selected TPMS, Diamond-based lattice and Split-P have more uniform stress distribution, resulting in a superior load-bearing efficiency than Gyroid and Primitive-based design showing less uniformity. This work offers a new design of the bone-mimicking implant, with cortical and trabecular bone components, to repair long bone critical-sized defects.
Collapse
Affiliation(s)
- Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia; Turku Clinical Biomaterials Center-TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014, Turku, Finland
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|