1
|
Chen S, Lai J, Chen J, Zheng L, Wang M. 3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. Int J Biol Macromol 2024; 283:137193. [PMID: 39500434 DOI: 10.1016/j.ijbiomac.2024.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jiahui Lai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jizhuo Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong Special Administrative Region of China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Li Y, Yin J, Zhong J, Pan W, Li N, Tang B. A GalNAc-modified CaCO 3 nano-immunomodulator for targeted and responsive immunotherapy against orthotopic liver cancer. Chem Commun (Camb) 2024; 60:8103-8106. [PMID: 38993155 DOI: 10.1039/d4cc01207k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A nano-immunomodulator modified with N-acetylgalactosamine (GalNAc) on calcium carbonate (CaCO3) was prepared for targeted and responsive immunotherapy. And the immunologic adjuvant (CpG ODNs) and doxorubicin (DOX) were released to synergistically improve immune response for treating orthotopic liver cancer.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Jiarui Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
3
|
Li R, Shi X, Zhang J, Liu B, Shen J, Liu H, Zhou J. CaCO 3-Encapsulated polydopamine with an adsorbed TLR7 agonist for improved tumor photothermal immunotherapy. Heliyon 2024; 10:e33837. [PMID: 39050425 PMCID: PMC11268191 DOI: 10.1016/j.heliyon.2024.e33837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Because of the tumor's recurrence and significant metastasis, the standard single-therapy paradigm has failed to meet clinical requirements. Recently, researchers have focused their emphasis on phototherapy and immunogenic cell death (ICD) techniques. In response to the current problems of immunotherapy, a multifunctional drug delivery nanosystem (PDA-IMQ@CaCO3-blinatumomab, PICB) was constructed by using high physiological compatibility of polydopamine (PDA) and calcium carbonate (CaCO3). Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) and bispecific antibody (BsAb) blinatumomab were loaded onto PDA-CaCO3 nanoparticles (NPs). The findings revealed that the system exhibited the advantages of good dispersion, high stability, excellent physiological compatibility, low toxicity, and high drug loading rate. Compared to the control group, it resulted in a 2.4-fold decrease in FOXP3+ regulatory T-cells within the tumor and a 5.0-fold increase in CD4+ effector T-cells, and promoted the production of damage-related molecular patterns to reinvigorate the ICD effect. PICB had a strong inhibitory effect on tumor growth in 4T1 tumor-bearing mice, and has no toxicity to other organs. Therefore, the multifunctional drug delivery nanosystem constructed in this study could effectively exert the properties of various components in vivo, fully demonstrate the synergistic effect between immunotherapy and photothermal therapy, thus significantly improving the tumor therapeutic efficacy, and has a promising clinical application.
Collapse
Affiliation(s)
- RuYan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - XianDong Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - JingYi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - BaoQing Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - HaiLong Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - JiaHong Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
4
|
Xu T, Wang L, Fan L, Ren H, Zhang Q, Wang J. Composite Microparticles from Microfluidics for Chemo-/Photothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38594624 DOI: 10.1021/acsami.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.
Collapse
Affiliation(s)
- Tianyuan Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
5
|
Zhou X, Wang Q, Lei Z, Zhang K, Zhen S, Yao H, Zu Y. Calcium Carbonate-Based Nanoplatforms for Cancer Therapeutics: Current State of Art and Future Breakthroughs. ACS OMEGA 2024; 9:12539-12552. [PMID: 38524488 PMCID: PMC10955594 DOI: 10.1021/acsomega.3c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
With the rapid development of nanotechnology, nanomaterials have shown immense potential for antitumor applications. Nanosized calcium carbonate (CaCO3) materials exhibit excellent biocompatibility and degradability, and have been utilized to develop platform technologies for cancer therapy. These materials can be engineered to carry anticancer drugs and functional groups that specifically target cancer cells and tissues, thereby enhancing therapeutic efficacy. Additionally, their physicochemical properties can be tailored to enable stimuli-responsive therapy and precision drug delivery. This Review consolidates recent literatures focusing on the synthesis, physicochemical properties, and multimodal antitumor therapies of CaCO3-based nanoplatforms (CBN). We also explore the current challenges and potential breakthroughs in the development of CBN for antitumor applications, providing a valuable reference for researchers in the field.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qihui Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zipeng Lei
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- Clinical
College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical
University, Hefei 230032, Anhui China
| | - Ke Zhang
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuxue Zhen
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Huiqin Yao
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Zu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li Y, Qi H, Geng Y, Li L, Cai X. Research progress of organic photothermal agents delivery and synergistic therapy systems. Colloids Surf B Biointerfaces 2024; 234:113743. [PMID: 38215604 DOI: 10.1016/j.colsurfb.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
Cancer is currently one of the leading causes of mortality worldwide. Due to the inevitable shortcomings of conventional treatments, photothermal therapy (PTT) has attracted great attention as an emerging and non-invasive cancer treatment method. Photothermal agents (PTAs) is a necessary component of PTT to play its role. It accumulates at the tumor site through appropriate methods and converts the absorbed light energy into heat energy effectively under near-infrared light irradiation, thus increasing the temperature of the tumor area and facilitating ablation of the tumor cells. Compared to inorganic photothermal agents, which have limitations such as non-degradability and potential long-term toxicity in vivo, organic photothermal agents exhibit excellent biocompatibility and biodegradability, thus showing promising prospects for the application of PTT in cancer treatment. And these organic photothermal agents can also be engineered into nanoparticles to improve their water solubility, extend their circulation time in vivo, and specifically target tumors. Moreover, further combination of PTT with other treatment methods can effectively enhance the efficacy of cancer treatment and alleviate the side effects associated with single treatments. This article briefly introduces several common types of organic photothermal agents and their nanoparticles, and reviews the applications of PTT based on organic photothermal agents in combination with chemotherapy, photodynamic therapy, chemodynamic therapy, immunotherapy, and multimodal combination therapy for tumor treatment, which expands the ideas and methods in the field of tumor treatment.
Collapse
Affiliation(s)
- Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
7
|
Lu Y, Chen L, Wu Z, Zhou P, Dai J, Li J, Wen Q, Fan Y, Zeng F, Chen Y, Fu S. Self-driven bioactive hybrids co-deliver doxorubicin and indocyanine green nanoparticles for chemo/photothermal therapy of breast cancer. Biomed Pharmacother 2023; 169:115846. [PMID: 37944443 DOI: 10.1016/j.biopha.2023.115846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is characterized by insidious onset, rapid progression, easy recurrence, and metastasis. Conventional monotherapies are usually ineffective due to insufficient drug delivery. Therefore, the combination of multimodal therapy with tumor microenvironment (TME)-responsive nanoplatforms is increasingly being considered for the targeted treatment of breast cancer. We synthesized bioactive hybrid nanoparticles for synergistic chemotherapy and photothermal therapy. Briefly, doxorubicin (DOX) and indocyanine green (ICG)-loaded nanoparticles (DI) of average particle size 113.58 ± 2.14 nm were synthesized, and their surface were modified with polydopamine (PDA) and attached to the anaerobic probiotic Bifidobacterium infantis (Bif). The bioactive Bif@DIP hybrid showed good photothermal conversion efficiency of about 38.04%. In addition, the self-driving ability of Bif allowed targeted delivery of the PDA-coated DI nanoparticles (DIP) to the hypoxic regions of the tumor. The low pH and high GSH levels in the TME stimulated the controlled release of DOX and ICG from the Bif@DIP hybrid, which then triggered apoptosis of tumor cells and induced immunogenic cell death (ICD), resulting in effective and sustained anti-tumor effect with minimum systemic toxicity. Thus, the self-driven Bif@DIP hybrid is a promising nanodrug for the targeted chemotherapy and photothermal therapy against solid cancers.
Collapse
Affiliation(s)
- Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Lan Chen
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhouxue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yu Fan
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
8
|
Liang T, Feng Z, Zhang X, Li T, Yang T, Yu L. Research progress of calcium carbonate nanomaterials in cancer therapy: challenge and opportunity. Front Bioeng Biotechnol 2023; 11:1266888. [PMID: 37811375 PMCID: PMC10551635 DOI: 10.3389/fbioe.2023.1266888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer has keeping the main threat to the health of human being. Its overall survival rate has shown rare substantial progress in spite of the improving diagnostic and treatment techniques for cancer in recent years. Indeed, such classic strategies for malignant tumor as surgery, radiation and chemotherapy have been developed and bring more hope to the patients, but still been accompanied by certain limitations, which include the challenge of managing large wound sizes, systemic toxic side effects, and harmful to the healthy tissues caused by imprecise alignment with tumors in radiotherapy. Furthermore, immunotherapy exhibits a limited therapeutic effect in advanced tumors which is reported only up to 25%-30%. The combination of nanomaterials and cancer treatment offers new hope for cancer patients, demonstrating strong potential in the field of medical research. Among the extensively utilized nanomaterials, calcium carbonate nanomaterials (CCNM) exhibit a broad spectrum of biomedical applications due to their abundant availability, cost-effectiveness, and exceptional safety profile. CCNM have the potential to elevate intracellular Ca2+ levels in tumor cells, trigger the mitochondrial damage and ultimately lead to tumor cell death. Moreover, compared with other types of nanomaterials, CCNM exhibit remarkable advantages as delivery systems owing to their high loading capacity, biocompatibility and biodegradability. The purpose of this review is to provide an overview of CCNM synthesis, focusing on summarizing its diverse roles in cancer treatment and the benefits and challenges associated with CCNM in cancer therapy. Hoping to present the significance of CCNM as for the clinical application, and summarize information for the design of CCNM and other types of nanomaterials in the future.
Collapse
Affiliation(s)
- Tiantian Liang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tianfang Li
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tingyu Yang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
9
|
Zhao S, Wang J, Lu SY, Wang J, Chen Z, Sun Y, Xu T, Liu Y, He L, Chen C, Ouyang Y, Tan Y, Chen Y, Zhou B, Cao Y, Liu H. Facile Synthesis of Basic Copper Carbonate Nanosheets for Photoacoustic Imaging-Guided Tumor Apoptosis and Ferroptosis and the Extension Exploration of the Synthesis Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42317-42328. [PMID: 37640060 DOI: 10.1021/acsami.3c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elimination of tumor cells using carbonate nanomaterials with tumor microenvironment-responsive capacity has been explored as an effective strategy. However, their therapeutic outcomes are always compromised by the relatively low intratumoral accumulation and limited synthesis method. Herein, a novel kind of basic copper carbonate nanosheets was designed and prepared using a green synthesis method for photoacoustic imaging-guided tumor apoptosis and ferroptosis therapy. These nanosheets were synthesized with the assistance of dopamine and ammonium bicarbonate (NH4HCO3) and the loading of glucose oxidase (GOx). NH4HCO3 could not only provide an alkaline environment for the polymerization of dopamine but also supply carbonates for the growth of nanosheets. The formed nanosheets displayed good acid and near-infrared light responsiveness. After intercellular uptake, they could be degraded to release Cu2+ and GOx, generating hydroxyl radicals through a Cu+-mediated Fenton-like reaction, consuming glucose, up-regulating H2O2 levels, and down-regulating GSH levels. Tumor elimination could be achieved by hydroxyl radical-induced apoptosis and ferroptosis. More amusingly, this synthesis method can be extended to several kinds of mono-element and multi-element carbonate nanomaterials (e.g., Fe, Mn, and Co), showing great potential for further tumor theranostics.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shi-Yu Lu
- College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanqing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Yan S, Dong L, Hu Z, Zhang Y, Xu W, Xing J, Zhang J. A Photosensitizer-Loaded Polydopamine Nanomedicine Agent for Synergistic Photodynamic and Photothermal Therapy. Molecules 2023; 28:5874. [PMID: 37570844 PMCID: PMC10420639 DOI: 10.3390/molecules28155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising non-invasive approaches to cancer treatment. However, the development of multifunctional nanomedicines is necessary to enhance these approaches' effectiveness and safety. In this study, we investigated a polydopamine-based nanoparticle (PDA-ZnPc+ Nps) loaded with the efficient photosensitizer ZnPc(4TAP)12+ (ZnPc+) through in vitro and in vivo experiments to achieve synergistic PDT and PTT. Our results demonstrated that PDA-ZnPc+ Nps exhibited remarkable efficacy due to its ability to generate reactive oxygen species (ROS), induce photothermal effects, and promote apoptosis in cancer cells. Moreover, in both MCF-7 cells and MCF-7 tumor-bearing mice, the combined PDT/PTT treatment with PDA-ZnPc+ Nps led to synergistic effects. Subcellular localization analysis revealed a high accumulation of ZnPc+ in the cytoplasm of cancer cells, resulting in cellular disruption and vacuolation following synergistic PDT/PTT. Furthermore, PDA-ZnPc+ Nps exhibited significant antitumor effects without causing evident systemic damage in vivo, enabling the use of lower doses of photosensitizer and ensuring safer treatment. Our study not only highlights the potential of PDA-ZnPc+ Nps as a dual-functional anticancer agent combining PDA and PTT but also offers a strategy for mitigating the side effects associated with clinical photosensitizers, particularly dark toxicity.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Luying Dong
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Ziyun Hu
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Yucheng Zhang
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Wei Xu
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Jianhong Xing
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
| |
Collapse
|
11
|
Li Y, Gao Y, Pan Z, Jia F, Xu C, Cui X, Wang X, Wu Y. Fabrication of Poly Dopamine@poly (Lactic Acid-Co-Glycolic Acid) Nanohybrids for Cancer Therapy via a Triple Collaboration Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1447. [PMID: 37176991 PMCID: PMC10180254 DOI: 10.3390/nano13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Yunhao Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China;
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujuan Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlu Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zheng D, Zhou J, Qian L, Liu X, Chang C, Tang S, Zhang H, Zhou S. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment. Bioact Mater 2023; 22:567-587. [DOI: 10.1016/j.bioactmat.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
13
|
Shi Y, Zhou M, Zhang Y, Wang Y, Cheng J. MRI-guided dual-responsive anti-tumor nanostructures for synergistic chemo-photothermal therapy and chemodynamic therapy. Acta Biomater 2023; 158:571-582. [PMID: 36586501 DOI: 10.1016/j.actbio.2022.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Image-guided stimulus-responsive theranostics are beneficial for identifying malignant lesions and integrating multiple cell-killing mechanisms to enhance tumor cell clearance. Herein, an intelligent dual-responsive nanostructure (HSPMH-DOX) was developed for magnetic resonance imaging (MRI)-guided synergistic chemo-photothermal therapy (PTT) and chemodynamic therapy (CDT). The core-shell nanostructure was synthesized by layering polydopamine (PDA), manganese oxide (MnO2), and hyaluronic acid (HA) onto drug-loaded hollow mesoporous silica nanoparticles (HS). The constructed nanoagent has both endogenous and external dual responses. The tumor microenvironment (pH/GSH) can trigger the degradation of gatekeeper (MnO2 and PDA), resulting in the release of anti-tumor drugs, whereas external near-infrared light irradiation can accelerate the degradation process and generate local overheating, resulting in PTT. Notably, MnO2 can not only consume intracellular GSH to enhance CDT but also release Mn2+ for precise localization of tumor tissues using MRI. Both in vitro and in vivo experiments showed that the prepared dual-response nanoagent satisfied biocompatibility, targeting, and the great efficiency of MRI-guided combined therapy. In animal models, combining chemo-PTT and CDT can eradicate tumors in less than two weeks. This work could pave the way for a wide range of stimulus-responsive synergistic theranostic applications, including MRI, chemo-photothermal therapy, and chemodynmic therapy. STATEMENT OF SIGNIFICANCE: Low bioavailability and severe side effects remain the major limitations of conventional cancer chemotherapy. Image-guided combination therapy can alleviate these problems and improve tumor-specific therapy. In the present study, the anticancer drug doxorubicin was encapsulated in a core-shell hollow mesoporous silica nanostructure (HSPMH-DOX), enabling MRI-guided targeted release under both endogenous and external dual stimuli. Moreover, the photothermal and nanoenzymatic effects of nanomedicine can cause local overheating in the tumor and amplify the intracellular CDT effect, accelerating tumor eradication. Systematic evaluations in vitro and in vivo confirmed that nanomedicine enables highly effective MRI-guided synergistic chemo-photothermal and chemodynamic therapy. This work offers a promising therapeutic strategy for precise anti-tumor applications.
Collapse
Affiliation(s)
- Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mengyang Zhou
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Zhong W, Guo F, Chen F, Law MK, Lu J, Shao D, Yu H, Chan G, Chen M. A multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced chemodynamic therapy. Front Pharmacol 2022; 13:1044083. [PMID: 36438812 PMCID: PMC9689698 DOI: 10.3389/fphar.2022.1044083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 10/09/2023] Open
Abstract
Chemodynamic therapy (CDT) eradicates tumors by intratumoral catalytic chemical reaction and subsequently disrupts redox homeostasis, which shows tumor specific reactive oxygen species (ROS)-mediated therapy. However, insufficient ROS generation and high levels of glutathione (GSH) in cancer cells have limited the therapeutic efficacy of CDT. Herein, we constructed a multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced CDT. Such a sandwich-like nanoamplifier comprised layer-by-layer artesunate (AS) and calcium carbonate coatings on the surface of manganese dioxide (MnO2) nanoparticles. The nanoamplifier was disassembled under an acidic environment once accumulated into tumor sites, and subsequently released AS to replenish the intratumoral peroxide pool for ROS amplification. Besides being an AS carrier, MnO2 exhausted GSH to yield Mn2+ ions that catalyzed the overexpression of H2O2 in the tumor, further intensifying the oxidative stress and facilitating cancer cell death. Taken together, our findings not only provide a paradigm for fabricating intratumoral catalytic nanomaterials, but also present a new ROS enhancement strategy to improve anti-tumor efficacy. Our multifunctional oxidative stress nanoamplifier might broaden the future of CDT.
Collapse
Affiliation(s)
- Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau, Macau SAR, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|