1
|
Chen H, Liu S, Xing J, Wen Y, Chen L. Orientin alleviates chondrocyte senescence and osteoarthritis by inhibiting PI3K/AKT pathway. Bone Joint Res 2025; 14:245-258. [PMID: 40085067 PMCID: PMC11908465 DOI: 10.1302/2046-3758.143.bjr-2023-0383.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease that leads to pain, disability, and reduced quality of life. Orientin exhibits considerable anti-inflammatory and antioxidative properties, but its role in chondrocyte senescence and OA progress has not yet been fully characterized. The aim of this study was to evaluate the protective effects of orientin on OA. Methods The role of orientin in extracellular matrix (ECM) degradation, mitochondrial homeostasis, and chondrocyte senescence was investigated in vitro. Meanwhile, we used molecular docking, small molecular inhibitors, and RNA interference to screen and validate candidate proteins regulated by orientin. In an anterior cruciate ligament transection (ACLT) rat model, radiograph, micro-CT, and various histological examinations were applied to evaluate the therapeutic effects of orientin on OA. Results We found that orientin inhibited ECM degradation and senescence-associated secretory phenotype (SASP) factor expression in interleukin (IL)-1β-treated chondrocytes. Additionally, orientin reduced the level of reactive oxygen species (ROS) and improved mitochondrial homeostasis. Furthermore, orientin suppressed IL-1β-induced activation of the nuclear factor kappa B (NF-κB) signalling pathway. We also found that orientin bound to phosphoinositide 3-kinase (PI3K) and inhibited NF-κB cascades via the PI3K/AKT pathway. In vivo, we demonstrated that orientin improved cartilage wear and reduced synovial inflammation and osteophyte in an ACLT rat model. Conclusion Orientin improves mitochondrial homeostasis, inhibits chondrocyte senescence, and alleviates OA progress via the PI3K/AKT/NF-κB axis, which suggests that orientin is a potential effective therapeutic agent for OA.
Collapse
Affiliation(s)
- Haitao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siyi Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwei Xing
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wei Y, Qian H, Zhang X, Wang J, Yan H, Xiao N, Zeng S, Chen B, Yang Q, Lu H, Xie J, Xie Z, Qin D, Li Z. Progress in multi-omics studies of osteoarthritis. Biomark Res 2025; 13:26. [PMID: 39934890 DOI: 10.1186/s40364-025-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Osteoarthritis (OA), a ubiquitous degenerative joint disorder, is marked by pain and disability, profoundly impacting patients' quality of life. As the population ages, the global prevalence of OA is escalating. Omics technologies have become instrumental in investigating complex diseases like OA, offering comprehensive insights into its pathogenesis and progression by uncovering disease-specific alterations across genomics, transcriptomics, proteomics, and metabolomics levels. In this review, we systematically analyzed and summarized the application and recent achievements of omics technologies in OA research by scouring relevant literature in databases such as PubMed. These studies have shed light on new potential therapeutic targets and biomarkers, charting fresh avenues for OA diagnosis and treatment. Furthermore, in our discussion, we highlighted the immense potential of spatial omics technologies in unraveling the molecular mechanisms of OA and in the development of novel therapeutic strategies, proposing future research directions and challenges. Collectively, this study encapsulates the pivotal advances in current OA research and prospects for future investigation, providing invaluable references for a deeper understanding and treatment of OA. This review aims to synthesize the recent progress of omics technologies in the realm of OA, aspiring to furnish theoretical foundations and research orientations for more profound studies of OA in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - He Qian
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Heguo Yan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sanjin Zeng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bingbing Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qianqian Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongting Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
4
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
5
|
Ye Q, Zhang M, Li S, Liu W, Xu C, Li Y, Xie R. Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11799. [PMID: 39519350 PMCID: PMC11545989 DOI: 10.3390/ijms252111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common and disabling degenerative joint disease, affects millions of people worldwide and imposes a considerable burden on patients and society due to its high prevalence and economic costs. The pathogenesis of OA is closely related to the progressive degradation of articular cartilage and the accompany inflammation; however, articular cartilage itself cannot heal and modulate the inflammation due to the lack of nerves, blood vessels, and lymph-vessels. Therefore, reliable and effective methods to treat OA remain highly desired. Local administration of drugs or bioactive materials by intra-articular injection of the delivery system represents a promising approach to treat OA, especially considering the prolonged joint retention, cartilage or chondrocytes targeting, and stimuli-responsive release to achieve precision OA therapy. This article summarizes and discusses the advances in the currently used delivery systems (nanoparticle, hydrogel, liposome, and microsphere) and then focuses on their applications in OA treatment from the perspective of endogenous stimulus (redox reactions, pH, enzymes, and temperature) and exogenous stimulus (near-infrared, magnetic, and ultrasound)-responsive release. Finally, the challenges and potential future directions for the development of nano-delivery systems are summarized.
Collapse
Affiliation(s)
- Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuyue Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Wenyue Liu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
6
|
Li L, Li J, Li JJ, Zhou H, Zhu XW, Zhang PH, Huang B, Zhao WT, Zhao XF, Chen ES. Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Front Cell Dev Biol 2024; 12:1472613. [PMID: 39507422 PMCID: PMC11537998 DOI: 10.3389/fcell.2024.1472613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
Collapse
Affiliation(s)
- Lan Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Jiang Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Zhou
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Wang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ping-Heng Zhang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Huang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Feng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - En-Sheng Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zheng H, Zheng J, Shen Y. Targeting SEZ6L2 in Colon Cancer: Efficacy of Bexarotene and Implications for Survival. J Gastrointest Cancer 2024; 55:1291-1305. [PMID: 38954188 DOI: 10.1007/s12029-024-01085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Bexarotene, also recognized as Targretin, is categorized as a retinoid, a type of cancer drug. Nevertheless, the precise mechanisms of bexarotene in relation to colon cancer remain unclear. In colon cancer, SEZ6L2 was suggested as one of the biomarkers and targets. This study presents a comprehensive exploration of the role of SEZ6L2 in colon cancer. METHODS We utilized both TCGA data and a cohort of Chinese patients. In a meticulous analysis of 478 colon cancer cases, SEZ6L2 expression levels were examined in relation to clinical characteristics, staging parameters, and treatment outcomes. Additionally, we investigated the pharmacological impact of bexarotene on SEZ6L2, demonstrating a significant downregulation of SEZ6L2 at both mRNA and protein levels in colon cancer patients following bexarotene treatment. RESULTS SEZ6L2 consistently overexpresses in colon cancer, serving as a potential universal biomarker with prognostic significance, validated in a diverse Chinese cohort. In vitro, SEZ6L2 promotes cell viability without affecting migration. Bexarotene treatment inhibits SEZ6L2 expression, correlating with reduced viability both in vitro and in vivo. SEZ6L2 overexpression accelerates declining survival rates in an in vivo context. Bexarotene's efficacy is context-dependent, effective in parental cells but not with SEZ6L2 overexpression. Computational predictions suggest a direct SEZ6L2-bexarotene interaction, warranting further experimental exploration. CONCLUSION The study provides valuable insights into SEZ6L2 as a prognostic biomarker in colon cancer, revealing its intricate relationship with clinical parameters, treatment outcomes, and bexarotene effects. Context-dependent therapeutic responses emphasize the nuanced understanding required for SEZ6L2's role in colon cancer, paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Huajun Zheng
- Digestive System Department, The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, 318 Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, China.
| | - Jianying Zheng
- Operation Department, The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou City, Zhejiang Province, China
| | - Yan Shen
- Digestive System Department, The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, 318 Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
8
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
9
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|