1
|
Akbarzadeh Khorshidi M, Bose S, Watschke B, Mareena E, Lally C. Characterisation of human penile tissue properties using experimental testing combined with multi-target inverse finite element modelling. Acta Biomater 2024; 184:226-238. [PMID: 38945188 DOI: 10.1016/j.actbio.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
This paper presents an inverse finite element (FE) approach aimed at estimating multi-layered human penile tissues. The inverse FE approach integrates experimental force-displacement and boundary deformation data of penile tissues with a developed FE model and uses new experimental data on human penile tissue. The experimental study encompasses whole organ plate-compression tests and individual layer tensile and compression tests, providing comprehensive insights into the tissue's mechanical behaviour. The biomechanical characterisation of penile tissue is of crucial significance for understanding its mechanical behaviour under various physiological and pathological conditions. The FE model is constructed using the realistic geometry of the penile segment and appropriate constitutive models for each tissue layer to leverage the accuracy and consistency of the model. Through systematic variation of tissue parameters in the inverse FE algorithm, simulations achieve the best match with both force-displacement and deformed boundary results obtained from the whole organ plate-compression tests. Test results from individual tissue layers are also utilised to assess the estimated parameters. The proposed inverse FE approach allows for the estimation of penile tissue parameters with high precision and reliability, shedding light on the mechanical properties of this complex biological organ. This work has applications not only in urology but also for researchers in various disciplines of biomechanics. As a result, our study contributes to advancing the understanding of human penile tissue mechanics whilst the methodology could also be applied to a range of other soft biological tissues. STATEMENT OF SIGNIFICANCE: This research uses a multi-target inverse finite element (FE) approach for estimating the material parameters of human penile tissues. By integrating experimental data and a realistic FE model, this study achieves high-precision constitutive model parameter estimation, offering key insights into penile tissue mechanics under various loading conditions. The significance of this work lies in the use of this inverse FE approach for fresh-frozen human penile tissues, to identify the mechanical properties and constitutive models for both segregated tunica albuginea and corpus cavernosum as well as intact penile tissue segments. The study's scientific impact lies in its advancement of the understanding of human urological tissue mechanics, impacting researchers and clinicians alike.
Collapse
Affiliation(s)
- Majid Akbarzadeh Khorshidi
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Shirsha Bose
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brian Watschke
- Urology, Boston Scientific Corp, Inc, Minnetonka, MN, USA
| | - Evania Mareena
- Urology, Boston Scientific Corp, Inc, Clonmel Co, Tipperary, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Bose S, Akbarzadeh Khorshidi M, Johnston RD, Watschke B, Mareena E, Lally C. Experimental testing combined with inverse-FE for mechanical characterisation of penile tissues. Acta Biomater 2024; 179:180-191. [PMID: 38494081 DOI: 10.1016/j.actbio.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Erectile dysfunction (ED) predominantly affects men in their 40-70s and can lead to poor quality of life. One option for ED treatment is surgical implantation of an inflatable penile prosthesis (IPP). However, they can be associated with negative outcomes including infection, migration or fibrosis. To improve outcomes, the interaction between the IPP device and surrounding tissues needs further investigation and this could be achieved using pre-clinical testbeds, but they need to be informed by extensive tissue testing. In this study, an experimental approach is adopted to characterise the mechanics of horse penile tissue and establish a testing protocol for penile tissue. The whole penis segments were tested in plate compression tests to obtain whole penis behaviour which is necessary for validation of a pre-clinical testbed, whilst tensile and compression tests were performed on individual penile tissues, namely corpus cavernosa and tunica albuginea. The second part of the paper deals with the development of a computational model employing an inverse finite element approach to estimate the material parameters of each tissue layer. These material parameters are in good agreement with the experimental results obtained from the individual tissue layers and whole organ tissue tests. This paper presents the first study proposing realistic nonlinear elastic material parameters for penile tissues and offers a validated testbed for IPPs. STATEMENT OF SIGNIFICANCE: Erectile Dysfunction (ED) affects over half the male population aged 40-70 potentially leading to poor quality of life. Patients not responding to conventional treatments of ED, are advised to use penile prostheses which can create an erection using implanted inflatable cylinders. A significant drawback of such prostheses, however, is the substantial tissue damage they can induce during their usage. Preclinical testbeds, including computational and bench-top models, could offer an efficient means of improving device designs to mitigate this damage but such testbeds require extensive knowledge of penile tissue properties. In this study, the authors determine penile tissue mechanics and apply an inverse FE approach to characterise the penile material properties required to validate preclinical models of the penis.
Collapse
Affiliation(s)
- Shirsha Bose
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Majid Akbarzadeh Khorshidi
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brian Watschke
- Urology, Boston Scientific Corp, Inc, Minnetonka, MN, USA
| | - Evania Mareena
- Urology, Boston Scientific Corp, Inc, Clonmel Co, Tipperary, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|