1
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2024; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
2
|
Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012003. [PMID: 39655853 DOI: 10.1088/2516-1091/ad879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024]
Abstract
The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs. The integration of multiobjective optimization and topology optimization has been highlighted for developing scaffolds that meet the multifaceted requirements of BTE. Challenges such as the need for consideration of manufacturing constraints and the incorporation of degradation and bone regeneration models into the optimization process have been identified. The review underscores the potential of advanced computational tools and additive manufacturing techniques in evolving the field of BTE, aiming to improve patient outcomes in bone tissue regeneration. The reliability of current optimization methods is examined, with suggestions for incorporating non-deterministic approaches andin vivovalidations to enhance the practical application of optimized scaffolds. The review concludes with a call for further research into artificial intelligence-based methods to advance scaffold design and optimization.
Collapse
Affiliation(s)
- Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Caleb Valeri
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
3
|
Hu T, Fang J, Shen Y, Li M, Wang B, Xu Z, Hu W. Advances of naturally derived biomedical polymers in tissue engineering. Front Chem 2024; 12:1469183. [PMID: 39635576 PMCID: PMC11614639 DOI: 10.3389/fchem.2024.1469183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The extensive utilization of natural polymers in tissue engineering is attributed to their excellent biocompatibility, degradability, and resemblance to the natural extracellular matrix. These polymers have a wide range of applications such as delivering therapeutic medicine, detecting diseases, sensing biological substances, promoting tissue regeneration, and treating diseases. This is a brief review of current developments in the properties and uses of widely used biomedical polymers derived from nature. Additionally, it explores the correlation between the characteristics and functions of these materials in different biomedical applications and highlights the prospective direction for the advancement of natural polymer materials in tissue engineering.
Collapse
Affiliation(s)
- Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Jie Fang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
- Shenzhen Youcare Medical Equipment Co. Ltd., Shenzhen, China
| | - Yang Shen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Mingyang Li
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zushun Xu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Weikang Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
4
|
Feng Y, Wang X, Dai Y, Feng S, Li L, You R. Silk Nanofibers/Carbon Nanotube Conductive Aerogel. Macromol Rapid Commun 2024:e2400702. [PMID: 39545858 DOI: 10.1002/marc.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Natural silk nanofibers (SNF) are attractive conductive substrates due to their high aspect ratio, outstanding mechanical strength, excellent biocompatibility, and controllable degradability. However, the inherently non-conductivity severely restricts the potential sensor application of SNF-based aerogels. In this work, the conductive nanofibrous aerogels with low-density achieved through freeze-drying by dispersing carbon nanotubes (CNT) into SNF suspension. The addition of CNT significantly increases the conductivity with improved mechanical properties of composite aerogels. SEM results reveal that the distinct hierarchical structure comprising micropores and nanofibrous networks within the pores is formed when CNT content reached 30%. Furthermore, increased cell viability suggested the excellent biocompatibility of SNF-CNT-based conductive aerogel for tissue-engineering applications. Subsequently, the elastic water-borne polyurethane (WPU) is incorporated to SNF-CNT system to construct aerogel with good sensing properties. The introduction of WPU demonstrates enhanced compressive performances and an exceptionally high elastic recovery ratio of 99.8%, thereby exhibiting a stable and lossless strain-sensing signal output at 5% strain. This study provides a feasible choice and strategy for exploring the potential application of SNF in functional aerogels.
Collapse
Affiliation(s)
- Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaotian Wang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Yunfeng Dai
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Siying Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Lechen Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
5
|
Shalimov A, Tashkinov M, Terekhina K, Elenskaya N, Vindokurov I, Silbersсhmidt VV. Crack propagation in TPMS scaffolds under monotonic axial load: Effect of morphology. Med Eng Phys 2024; 132:104235. [PMID: 39428133 DOI: 10.1016/j.medengphy.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
In this paper, the mechanical behaviour and failure of porous additively manufactured (AM) polylactide (PLA) scaffolds based on the triply periodic minimal surfaces (TPMS) is investigated using numerical calculations of their unit cells and representative volumes. The strain-amplification factor is chosen as the main parameter, and the most critical locations for failure of different types of scaffold structures are evaluated. The results obtained are presented in comparison with a multiple-crack-growth algorithm using the extended finite element method (XFEM), underpinned by the experimentally obtained fracture properties of PLA. The effect of morphology of TPMS structures on the pre-critical, critical and post-critical behaviours of scaffolds under monotonic loading regimes is assessed. The results provide an understanding of the fracture behaviour and main risk points for crack initiation in structures of AM-PLA scaffolds based on typical commonly used types of TPMS, as well as the influence of structure type and external load on this behaviour.
Collapse
Affiliation(s)
- Aleksandr Shalimov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia.
| | - Mikhail Tashkinov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Ksenia Terekhina
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Nataliya Elenskaya
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Ilia Vindokurov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | | |
Collapse
|
6
|
Rubina A, Sceglovs A, Ramata-Stunda A, Pugajeva I, Skadins I, Boyd AR, Tumilovica A, Stipniece L, Salma-Ancane K. Injectable mineralized Sr-hydroxyapatite nanoparticles-loaded ɛ-polylysine-hyaluronic acid composite hydrogels for bone regeneration. Int J Biol Macromol 2024; 280:135703. [PMID: 39288854 DOI: 10.1016/j.ijbiomac.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
In this study, multifunctional injectable mineralized antibacterial nanocomposite hydrogels were prepared by a homogenous distribution of high content of (up to 60 wt%) Sr-substituted hydroxyapatite (Sr-HAp) nanoparticles into covalently cross-linked ɛ-polylysine (ɛ-PL) and hyaluronic acid (HA) hydrogel network. The developed bone-targeted nanocomposite hydrogels were to synergistically combine the functional properties of bioactive Sr-HAp nanoparticles and antibacterial ɛ-PL-HA hydrogels for bone tissue regeneration. Viscoelasticity, injectability, structural parameters, degradation, antibacterial activity, and in vitro biocompatibility of the fabricated nanocomposite hydrogels were characterized. Physical performances of the ɛ-PL-HA hydrogels can be tailored by altering the mass ratio of Sr-HAp. The nanocomposite hydrogels revealed good stability against enzymatic degradation, which increased from 5 to 19 weeks with increasing the mass ratio of Sr-HAp from 40 % to 60 %. The loading of the Sr-HAp at relatively high mass ratios did not suppress the fast-acting and long-term antibacterial activity of the ɛ-PL-HA hydrogels against S. aureus and E. coli. The cell studies confirmed the cytocompatibility and pre-collagen I synthesis-promoting activity of the fabricated nanocomposite hydrogels.
Collapse
Affiliation(s)
- A Rubina
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - I Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - I Skadins
- Department of Biology and Microbiology, Riga Stradins University, Dzirciema St. 16, Riga LV-1007, Latvia
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom of Great Britain and Northern Ireland
| | - A Tumilovica
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - L Stipniece
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - K Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
7
|
Seraji AA, Nahavandi R, Kia A, Rabbani Doost A, Keshavarz V, Sharifianjazi F, Tavamaishvili K, Makarem D. Finite element analysis and in vitro tests on endurance life and durability of composite bone substitutes. Front Bioeng Biotechnol 2024; 12:1417440. [PMID: 39301173 PMCID: PMC11410606 DOI: 10.3389/fbioe.2024.1417440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Bone structures facilitate the regeneration and repair of bone tissue in regions where it has been damaged or destroyed, either temporarily or permanently. Therefore, the bone's fatigue strength and durability are crucial to its efficacy and longevity. Several variables, such as the construct's material qualities, design, and production procedure, loading and unloading cycles, and physiological conditions influence the endurance life of bone constructs. Metals, ceramics, and polymers are all routinely utilized to create bone substitutes, and each of these materials has unique features that might affect the fatigue strength and endurance life of the final product. The mechanical performance and capacity to promote bone tissue regeneration may be affected by the scaffold's design, porosity, and pore size. Researchers employ mechanical testing under cyclic loading circumstances as one example of an experimental approach used to assess bone construction endurance. These analyses can give us important information about the stress-strain behavior, resistance to multiple loading cycles, and fatigue strength of the new structure. Predicting the endurance life of the developed construct may also be possible with the use of simulations and numerical analyses. Hence, in order to create reliable and efficient constructs for bone tissue engineering, it is crucial to understand their fatigue strength and durability. The purpose of this study is to analyze the effective parameters for fatigue strength of bone structures and to gather the models and evaluations utilized in endurance life assessments.
Collapse
Affiliation(s)
- Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Nahavandi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Kia
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Ahad Rabbani Doost
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Vahid Keshavarz
- Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | | | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion Politecnica de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
9
|
Bakhtiari H, Nouri A, Tolouei-Rad M. Fatigue Performance of 3D-Printed Poly-Lactic-Acid Bone Scaffolds with Triply Periodic Minimal Surface and Voronoi Pore Structures. Polymers (Basel) 2024; 16:2145. [PMID: 39125172 PMCID: PMC11314528 DOI: 10.3390/polym16152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Bone scaffolds serve a crucial role in tissue engineering, particularly in facilitating bone regeneration where natural repair is insufficient. Despite advancements in the fabrication of polymeric bone scaffolds, the challenge remains to optimize their mechanical resilience. Specifically, research on the fatigue behaviour of polymeric bone scaffolds is scarce. This study investigates the influence of pore architecture on the mechanical performance of poly-lactic-acid (PLA) scaffolds under quasi-static and cyclic compression. PLA scaffolds with a 60% porosity were fabricated using extrusion-based 3D printing in various designs: Gyroid, Lidinoid, Fischer-Koch, IWP, and Voronoi. Results demonstrated that Gyroid scaffolds had the highest compressive strength (6.6 MPa), followed by Lidinoid, Fischer-Koch, IWP, and Voronoi designs. Increased strut thickness was linked to higher compressive strength. However, normalized fatigue resistance showed a different pattern. While scaffolds resisted fatigue cycles at low strain amplitudes, fatigue damage was observed at higher strains. Voronoi structures exhibited the highest normalized fatigue performance, enduring around 58,000 cycles at 85% strain amplitude, followed by Gyroid, Fischer-Koch, Lidinoid, and IWP structures. Enhanced fatigue performance in different topologies correlated with the minimum cross-sectional area of scaffolds. Given the importance of both static and fatigue strength, the Gyroid topology emerges as the superior choice overall.
Collapse
Affiliation(s)
- Hamed Bakhtiari
- Centre for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Alireza Nouri
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia;
| | - Majid Tolouei-Rad
- Centre for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia;
| |
Collapse
|
10
|
Wei P, Zhou J, Xiong S, Yi F, Xu K, Liu M, Xi H, Zhou Z, Qiu Z, Liu H, Zeng J, Liu Y, Qiu P, Zhou J, Liu S, Long Z, Li J, Xiong L. Chestnut-Inspired Hollow Hydroxyapatite 3D Printing Scaffolds Accelerate Bone Regeneration by Recruiting Calcium Ions and Regulating Inflammation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9768-9786. [PMID: 38349802 DOI: 10.1021/acsami.3c17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
This study aims to overcome the drawbacks associated with hydroxyapatite (HAP) dense structures after sintering, which often result in undesirable features such as large grain size, reduced porosity, high crystallinity, and low specific surface area. These characteristics hinder osseointegration and limit the clinical applicability of the material. To address these issues, a new method involving the preparation of hollow hydroxyapatite (hHAP) microspheres has been proposed. These microspheres exhibit distinctive traits including weak crystallization, high specific surface area, and increased porosity. The weak crystallization aligns more closely with early mineralization products found in the human body and animals. Moreover, the microspheres' high specific surface area and porosity offer advantages for protein loading and facilitating osteoblast attachment. This innovative approach not only mitigates the limitations of conventional HAP structures but also holds the potential for improving the effectiveness of hydroxyapatite in biomedical applications, particularly in enhancing osseointegration. Three-dimensional printed hHAP/chitosan (CS) scaffolds with different hHAP concentration gradients were manufactured, and the physical and biological properties of each group were systematically evaluated. In vitro and in vivo experiments show that the hHAP/CS scaffold has excellent performance in bone remodeling. Furthermore, in-scaffold components, hHAP and CS were cocultured with bone marrow mesenchymal stem cells to explore the regulatory role of hHAP and CS in the process of bone healing and to reveal the cell-level specific regulatory network activated by hHAP. Enrichment analysis showed that hHAP can promote bone regeneration and reconstruction by recruiting calcium ions and regulating inflammatory reactions.
Collapse
Affiliation(s)
- Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kejun Xu
- Jiangxi Jiayou Shuguang Orthopedic Hospital, Nanchang 330009, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Zhigang Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Zhiqiang Qiu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hantian Liu
- Queen Mary School, Nanchang University, Nanchang 330036, China
| | - Jianhua Zeng
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yayun Liu
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Peng Qiu
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianguo Zhou
- Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Shiwei Liu
- Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Jingtang Li
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
11
|
Khan AR, Grewal NS, Jun Z, Tawfiq FMO, Tchier F, Muhammad Zulqarnain R, Zhang HJ. Raising the Bar: Progress in 3D-Printed Hybrid Bone Scaffolds for Clinical Applications: A Review. Cell Transplant 2024; 33:9636897241273562. [PMID: 39517106 PMCID: PMC11549696 DOI: 10.1177/09636897241273562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Damage to bones resulting from trauma and tumors poses a significant challenge to human health. Consequently, current research in bone damage healing centers on developing three-dimensional (3D) scaffolding materials that facilitate and enhance the regeneration of fractured bone tissues. In this context, the careful selection of materials and preparation processes is essential for creating demanding scaffolds for bone tissue engineering. This is done to optimize the regeneration of fractured bones. This study comprehensively analyses the latest scientific advancements and difficulties in developing scaffolds for bone tissue creation. Initially, we clarified the composition and process by which bone tissue repairs itself. The review summarizes the primary uses of materials, both inorganic and organic, in scaffolds for bone tissue engineering. In addition, we present a comprehensive study of the most recent advancements in the mainstream techniques used to prepare scaffolds for bone tissue engineering. We also examine the distinct advantages of each method in great detail. This article thoroughly examines potential paths and obstacles in bone tissue engineering scaffolds for clinical applications.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| | - Navdeep Singh Grewal
- Department of Mechanical Engineering, Guru Kashi University, Talwandi Sabo, India
| | - Zhang Jun
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ferdous M. O. Tawfiq
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fairouz Tchier
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hai-Jun Zhang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| |
Collapse
|