1
|
Chen L, Jiang Z, Zhou H, Zhang H, Huang C, Wen Q, Liu X, He Y, Shi P, Liu K, Yang L. Effect of hyaluronic acid on the formation of acellular dermal matrix-based interpenetrating network sponge scaffolds for accelerating diabetic wound healing through photothermal warm bath. Int J Biol Macromol 2024; 283:137268. [PMID: 39505193 DOI: 10.1016/j.ijbiomac.2024.137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Adequate vascularization essential for delivering nutrients critical to wound healing, yet impaired angiogenesis is a major barrier in diabetic wound repair. This study investigates the impact of hyaluronic acid on interpenetrating network sponge scaffolds derived from an acellular dermal matrix, with the aim of enhancing vascularization and healing of diabetic wounds via photothermal warm bath therapy. We prepared three-dimensional porous sponges (H1P4D2@DFO) using molecular interpenetration and ion crosslinking of porcine acellular dermal matrix (PADM), hyaluronic acid, and polydopamine nanoparticles loaded with deferoxamine mesylate (PDA@DFO). This resulting extracellular matrix-based sponge demonstrated properties suitable for wound repair, including high cell adhesion, biocompatibility, bioactivity, porosity (85 %), and water absorption (4500 %). The near-infrared (NIR) photothermal effect of PDA@DFO and the sustained release of deferoxamine mesylate (DFO) enhanced wound vascularization within the wound site. These findings suggest that our sponge scaffold can simulate skin-like structures and establish a supportive microenvironment conducive to microvascular reconstruction. By combining the photothermal warm bath approach with the scaffold's tailored 3D structure, we observed enhanced angiogenesis and accelerated diabetic wound healing, indicating potential clinical applications of these scaffolds in chronic wound management.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Yufang He
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 50515, China.
| | - Kun Liu
- Experimental Education/Administration Centre, National Demonstration Centre for Experimental Education of Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China.
| |
Collapse
|
2
|
Li Z, Chen L, Yang S, Han J, Zheng Y, Chen Z, Shi X, Yang J. Glucose and pH dual-responsive hydrogels with antibacterial, reactive oxygen species scavenging, and angiogenesis properties for promoting the healing of infected diabetic foot ulcers. Acta Biomater 2024:S1742-7061(24)00612-3. [PMID: 39424021 DOI: 10.1016/j.actbio.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The healing process of diabetic foot ulcers is challenging due to the presence of a complex and severe inflammatory microenvironment, characterized by hyperglycemia, low pH, susceptibility to infection, vascular dysfunction, and over-expression of reactive oxygen species (ROS), which can potentially lead to amputation or even mortality. Herein, a glucose and pH dual-responsive hydrogel was designed and prepared by crosslinking phenylboronic acid-grafted quaternary chitosan (QF, 4 wt%) with dopamine-grafted oxidized hyaluronic acid (OD, 5 wt%) through phenylboronation, schiff-base reaction, and other techniques. The multifunctional QO/@PV@AB7 hydrogel was prepared by incorporating pravastatin-loaded chitosan nanoparticles (CSNPs@PV, 2 mg/mL) and antimicrobial peptide AMP-AB7 loaded silica nanoparticles (SiO2NPs@AB7, 0.5 mg/mL). The results demonstrate that the QO/@PV@AB7 hydrogel exhibits good responsiveness to acidic conditions and high glucose levels, while effectively scavenging various types of ROS. Moreover, it exerted protective effects against oxidative stress on cells, enhanced HUVECs viability, and promoted angiogenesis. Notably, the QO/@PV@AB7 hydrogel displayed potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli. Additionally, in an MRSA-infected rat model of diabetic foot wounds, administration of the QO/@PV@AB7 hydrogel led to increased secretion of pro-angiogenic factors such as vascular endothelial nitric oxide synthase (eNOS), vascular endothelial-generating factor (VEGF), and endothelial cell adhesion molecule (CD31). Furthermore, the hydrogel significantly reduced the levels of inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while simultaneously increasing the levels of anti-inflammatory cytokines such as interleukin-10 (IL-10). The findings suggest that multifunctional hydrogels incorporating PV@CSNPs and SiO2NPs@AB7 demonstrate promising potential as a therapeutic approach for the treatment of diabetic foot. STATEMENT OF SIGNIFICANCE: Here, a glucose and pH dual-responsive QO/@PV@AB7 hydrogel with antimicrobial and angiogenesis-promoting properties was developed for the treatment of infected wounds in diabetic feet. Our findings demonstrate that the proposed hydrogel exhibits good responsiveness, effectively scavenges various types of reactive oxygen species (DPPH, O2-, -OH, and ABTS+), provides protection against oxidative stress, enhances HUVECs cell viability, and promotes angiogenesis. Notably, it also demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and E. coli. Additionally, in vivo experiments demonstrated that the hydrogel exhibited accelerated wound healing in MRSA-infected diabetic foot ulcers, with a reduction of four days compared to the control group.
Collapse
Affiliation(s)
- Zhendong Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Longhui Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shasha Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zelong Chen
- Department of Biomedical Engineering, 900th Hospital of Joint Logistics Support Force, No. 156 West Second Ring Road, Fuzhou 350025, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
3
|
Yan L, Wang Y, Wang W, Luo J, Cheng B, Yang J, Li B, Wang X. A poly (lactic-co-glycolic acid) self-pumping Janus dressing with bidirectional biofluid transport for diabetic wound healing via anti-bacteria and pro-angiogenesis. Int J Biol Macromol 2024; 275:133361. [PMID: 38960245 DOI: 10.1016/j.ijbiomac.2024.133361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Diabetic wound healing poses a substantial challenge owing to bacterial infections, insufficient angiogenesis, and excessive exudates. Currently, most of the clinical dressings used for diabetic wounds are still conventional dressings such as gauze. In this study, a three-layer Janus dressing was developed via continuous electrostatic spinning. The top-layer was composed of polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate. The hydrophobic top-layer prevented the adhesion of foreign bacteria. The mid-layer was composed of polyethylene glycol, polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate facilitated exudate absorption and bioactive ion release. The modified sub-layer containing polylactic acid-glycolic acid, hydroxyapatite doped with silver ions and silicate and sodium alginate microspheres enabled both the transport of wound exudate from the wound bed to dressing and the backflow of bioactive silver ions and silicate to the wound bed, thereby reducing infection and stimulating angiogenesis. Through in vivo and in vivo experiments, the Janus dressing showed to have antimicrobial, angiogenic, and exudate-control properties that accelerate healing in diabetic wounds. As a novel dressing, the multifunctional, self-pumping Janus wound dressing with bi-directional biofluidic transport offers a new approach to diabetic wound healing.
Collapse
Affiliation(s)
- Lisi Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
4
|
Sharma A, Dheer D, Puri V, Alsayari A, Wahab S, Kesharwani P. Insights of biopolymeric blended formulations for diabetic wound healing. Int J Pharm 2024; 656:124099. [PMID: 38614431 DOI: 10.1016/j.ijpharm.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Diabetic wounds (DWs) pose a significant health burden worldwide, with their management presenting numerous challenges. Biopolymeric formulations have recently gained attention as promising therapeutic approaches for diabetic wound healing. These formulations, composed of biocompatible and biodegradable polymers, offer unique properties such as controlled drug release, enhanced wound closure, and reduced scarring. In this review, we aim to provide a comprehensive overview of the current state of research and future prospects regarding the application of biopolymeric formulations for diabetic wound healing. The review begins by highlighting the underlying pathophysiology of DWs, including impaired angiogenesis, chronic inflammation, and compromised extracellular matrix (ECM) formation. It further explores the key characteristics of biopolymeric materials, such as their biocompatibility, biodegradability, and tunable physicochemical properties, which make them suitable for diabetic wound healing applications. The discussion further delves into the types of biopolymeric formulations utilized in the treatment of DWs. These include hydrogels, nanoparticles (NP), scaffolds, films, and dressings. Furthermore, the review addresses the challenges associated with biopolymeric formulations for diabetic wound healing. In conclusion, biopolymeric formulations present a promising avenue for diabetic wound healing. Their unique properties and versatility allow for tailored approaches to address the specific challenges associated with DWs. However, further research and developments are required to optimize their therapeutic efficacy, stability, manufacturing processes, and regulatory considerations. With continued advancements in biopolymeric formulations, the future holds great promise for improving the management and outcomes of DWs.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Wei Y, Fu J, Liu E, Gao J, Lv Y, Li Z. Injectable hydrogels doped with PDA nanoparticles for photothermal bacterial inhibition and rapid wound healing in vitro. RSC Adv 2024; 14:2778-2791. [PMID: 38234872 PMCID: PMC10792480 DOI: 10.1039/d3ra08219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
The difficulty of wound healing due to skin defects has been a great challenge due to the complex inflammatory microenvironment. Delayed wound healing severely affects the quality of life of patients and represents a significant economic burden for public health systems worldwide. Therefore, there is an urgent need for the development of novel wound dressings that can efficiently resist drug-resistant bacteria and have superior wound repair capabilities in clinical applications. In this study, we designed an adhesive antimicrobial hydrogel dressing (GMH) based on methacrylic-anhydride-modified gelatin and oxidized hyaluronic acid formed by Schiff base and UV-induced double cross-linking for infected wound repair. By inserting PDA nanoparticles into the hydrogel (GMH/PDA), the hydrogel has the capability of photothermal conversion and exhibits good photothermal antimicrobial properties under near-infrared (NIR) light irradiation, which helps to reduce the inflammatory response and avoid bacterial infections during the wound healing process. In addition, GMH/PDA hydrogel exhibits excellent injectability, allowing the hydrogel dressings to be adapted to complex wound surfaces, making them promising candidates for wound therapy. In conclusion, the multifunctional injectable GMH/PDA hydrogel possesses high antimicrobial efficiency, antioxidant properties and good biocompatibility, making them promising candidates for the treatment of infected skin wounds.
Collapse
Affiliation(s)
- Ying Wei
- Department of Operating Room, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| | - Junhua Fu
- Department of Operating Room, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| | - Enrui Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| | - Junru Gao
- Department of Outpatient, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| | - Yaqing Lv
- Department of Outpatient, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| | - Zhenlu Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 266003 Qingdao China
| |
Collapse
|