1
|
Glucose-6-phosphate dehydrogenase deficiency. Blood 2021; 136:1225-1240. [PMID: 32702756 DOI: 10.1182/blood.2019000944] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is 1 of the commonest human enzymopathies, caused by inherited mutations of the X-linked gene G6PD. G6PD deficiency makes red cells highly vulnerable to oxidative damage, and therefore susceptible to hemolysis. Over 200 G6PD mutations are known: approximately one-half are polymorphic and therefore common in various populations. Some 500 million persons with any of these mutations are mostly asymptomatic throughout their lifetime; however, any of them may develop acute and sometimes very severe hemolytic anemia when triggered by ingestion of fava beans, by any of a number of drugs (for example, primaquine, rasburicase), or, more rarely, by infection. Approximately one-half of the G6PD mutations are instead sporadic: rare patients with these mutations present with chronic nonspherocytic hemolytic anemia. Almost all G6PD mutations are missense mutations, causing amino acid replacements that entail deficiency of G6PD enzyme activity: they compromise the stability of the protein, the catalytic activity is decreased, or a combination of both mechanisms occurs. Thus, genotype-phenotype correlations have been reasonably well clarified in many cases. G6PD deficiency correlates remarkably, in its geographic distribution, with past/present malaria endemicity: indeed, it is a unique example of an X-linked human polymorphism balanced through protection of heterozygotes from malaria mortality. Acute hemolytic anemia can be managed effectively provided it is promptly diagnosed. Reliable diagnostic procedures are available, with point-of-care tests becoming increasingly important where primaquine and its recently introduced analog tafenoquine are required for the elimination of malaria.
Collapse
|
2
|
Roper D, Layton M, Rees D, Lambert C, Vulliamy T, De la Salle B, D’Souza C. Laboratory diagnosis of G6PD deficiency. A British Society for Haematology Guideline. Br J Haematol 2020; 189:24-38. [DOI: 10.1111/bjh.16366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David Roper
- Department of Haematology Imperial College Healthcare NHS Trust London UK
| | - Mark Layton
- Department of Haematology Imperial College Healthcare NHS Trust London UK
| | - David Rees
- Department of Haematology King's College Hospital NHS Foundation Trust London UK
| | - Chris Lambert
- Department of Haematology and Blood Transfusion King's College Hospital NHS Foundation Trust London UK
| | - Tom Vulliamy
- Queen Mary University of London Blizard Institute London UK
| | | | | | | |
Collapse
|
3
|
Kalnoky M, Bancone G, Kahn M, Chu CS, Chowwiwat N, Wilaisrisak P, Pal S, LaRue N, Leader B, Nosten F, Domingo GJ. Cytochemical flow analysis of intracellular G6PD and aggregate analysis of mosaic G6PD expression. Eur J Haematol 2018; 100:294-303. [PMID: 29240263 PMCID: PMC5888147 DOI: 10.1111/ejh.13013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Background Medicines that exert oxidative pressure on red blood cells (RBC) can cause severe hemolysis in patients with glucose‐6‐phosphate dehydrogenase (G6PD) deficiency. Due to X‐chromosome inactivation, females heterozygous for G6PD with 1 allele encoding a G6PD‐deficient protein and the other a normal protein produce 2 RBC populations each expressing exclusively 1 allele. The G6PD mosaic is not captured with routine G6PD tests. Methods An open‐source software tool for G6PD cytofluorometric data interpretation is described. The tool interprets data in terms of % bright RBC, or cells with normal G6PD activity in specimens collected from 2 geographically and ethnically distinct populations, an African American cohort (USA) and a Karen and Burman ethnic cohort (Thailand) comprising 242 specimens including 89 heterozygous females. Results The tool allowed comparison of data across 2 laboratories and both populations. Hemizygous normal or deficient males and homozygous normal or deficient females cluster at narrow % bright cells with mean values of 96%, or 6% (males) and 97%, or 2% (females), respectively. Heterozygous females show a distribution of 10‐85% bright cells and a mean of 50%. The distributions are associated with the severity of the G6PD mutation. Conclusions Consistent cytofluorometric G6PD analysis facilitates interlaboratory comparison of cellular G6PD profiles and contributes to understanding primaquine‐associated hemolytic risk.
Collapse
Affiliation(s)
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, UK
| | - Maria Kahn
- Diagnostics Program, PATH, Seattle, WA, USA
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nongnud Chowwiwat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pornpimon Wilaisrisak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, WA, USA
| | | | | | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Van Noorden CJF. Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J Histochem Cytochem 2010; 58:481-97. [PMID: 20124092 DOI: 10.1369/jhc.2010.955518] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.
Collapse
Affiliation(s)
- Cornelis J F Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Peters AL, Van Noorden CJF. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women. J Histochem Cytochem 2009; 57:1003-11. [PMID: 19546473 DOI: 10.1369/jhc.2009.953828] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.
Collapse
Affiliation(s)
- Anna L Peters
- Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam
| | | |
Collapse
|