1
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Mol Biol Rep 2020; 47:7959-7970. [PMID: 33006714 DOI: 10.1007/s11033-020-05873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Phytochemicals, bioactive food compounds, found in plants have been described as protective agents against renal injury. This work was planned to evaluate the effects of EA on anti-oxidative and anti-inflammation pathways in kidney damage induced with carbon tetrachloride. In this study, experimental animals (n = 36, 8 weeks old rats) were divided into 4 groups as follows: 1) Control group 2) EA group (10 mg/kg body weight) 3) CCl4 group (1.5 ml/kg, body weight) 4) EA + CCl4 group. The potentially protective effect of EA on kidney damage exposed by CCl4 in rats were evaluated. EA administration protects CCl4 induced kidney damage against oxidative stress through its antioxidant protection. Treatment of EA significantly reduced lipid peroxidation and improved glutathione and catalase enzyme activity. Recently studies showed that EA activated caspase-3 and nuclear transcription factor erythroid 2 related factor driven antioxidant signal pathway and protected the kidney against damage induced by oxidative stress. Furthermore, EA also markedly decreased the level of cyclooxygenase-2, the vascular endothelial growth factor and tumor necrosis factor-alpha and suppressed the protein synthesis of nuclear factor-kappa-B. This study reveals that EA has kidney protective effect against CCl4 induced oxidative damage and inflammation.
Collapse
|
3
|
Almasmoum H, Refaat B, Ghaith MM, Almaimani RA, Idris S, Ahmad J, Abdelghany AH, BaSalamah MA, El-Boshy M. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103246. [PMID: 31465891 DOI: 10.1016/j.etap.2019.103246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is an extremely poisonous, non-essential trace element and toxicity develops in humans following frequent exposure to the heavy metal in polluted environmental and occupational settings. Pb induces hepatic damage through the depletion of the antioxidant system, enhancing cellular oxidative stress and stimulation of proinflammatory cytokines. Although the antioxidant and anti-inflammatory actions of vitamin D3 (VD3) are well-established, a minority of studies measured the protective actions of VD3 against Pb toxicity. Therefore, this work studied the effects of vitamin VD3 therapy on the fundamental molecular basis underlying hepatic injury induced by chronic Pb toxicity. Twenty-four adult male rats were distributed equally into the negative controls (NC), positive controls (PC) and VD3 groups. While both the PC and VD3 groups received Pb-acetate in drinking water (1000 mg/L) for four weeks, the latter group also received intramuscular VD3 injections (1000 IU/kg; 3 days/week) simultaneously with Pb. The liver enzymes together with the serum and hepatic tissue Pb concentrations increased markedly in the PC group compared with the NC group. Pb toxicity also drastically induced hepatocyte apoptosis/necrosis, increased the hepatic tissue concentrations of malondialdehyde and the pro-inflammatory cytokines (TGF-β, IL-4 & TNF-α) as well as reduced the anti-oxidative enzymes (GSH, GPx & CAT) and the anti-inflammatory cytokine, IL-10, compared with the NC group. Pb also significantly decreased the serum concentrations of VD3 and Ca2+. Additionally, the hepatic expressions of VD receptor, Cyp24a1 enzyme, L-type Ca2+-channel, calbindin-D28k & -D29k, calmodulin and calmodulin-dependent protein kinase II were significantly upregulated, whereas the VD binding protein, CYP2R1 enzyme and T-type Ca2+-channel were markedly inhibited at the gene and protein levels following Pb intoxication. VD3 alleviated the hepatic damage, inhibited the oxidative stress and pro-inflammatory molecules as well as upregulated the anti-oxidant and anti-inflammatory markers and restored the expression of the VD/Ca2+ regulatory molecules compared with the PC group. VD3 supplementation discloses promising protective effects against Pb-induced hepatic damage, through its anti-inflammatory and antioxidant actions as well as by modulating the hepatocyte calcium homeostatic molecules.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Saudi Arabia.
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Clinical Pathology, Fac. Vet. Med, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Chang IY, Yoon SP. The changes of calretinin immunoreactivity in paraquat-induced nephrotoxic rats. Acta Histochem 2012; 114:836-41. [PMID: 22464403 DOI: 10.1016/j.acthis.2012.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022]
Abstract
Calcium-binding proteins are present in the kidneys: calbindin D-28k in the distal tubules and calretinin in the proximal tubules. Since paraquat causes degeneration in the brush border-bearing proximal tubule cells in rat kidneys, we investigated the changes of calretinin immunoreactivity in the proximal tubule cells of paraquat-induced nephrotoxicity in experimental male Sprague-Dawley rats following chitosan oligosaccharide pretreatment to investigate its protective properties. Paraquat (60 mg/kg) was administered intraperitoneally with or without chitosan oligosaccharide (500 mg/kg, p.o.) pretreatment. The changes on calretinin were compared with those of calbindin D-28k by immunohistochemistry and Western Blot analysis. Calretinin was immunolocalized on the apical surface of proximal tubule cells in the deeper cortex of normal kidney, and disappeared after paraquat administration with minor changes of calbindin D-28k immunoreactivity in the distal tubules and collecting ducts. Chitosan oligosaccharide pretreatment caused increased expression of calretinin and calbindin D-28k before paraquat injection and helped preserve proximal tubules after paraquat treatment. However, Western blot analysis on calretinin and calbindin D-28k could not explain the degeneration of the proximal tubule cells in paraquat-induced nephrotoxicity. These findings suggested that calretinin is a possible and more useful histopathological marker for proximal tubule cells in paraquat-induced nephrotoxic rats.
Collapse
Affiliation(s)
- In Youb Chang
- Korean DNA Repair Research Center, Chosun University, Gwangju, Republic of Korea
| | | |
Collapse
|