1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Ling B, Ye G, Qin C, Liao X, Yang R, Su L, Qi G. IGSF10 inhibits the metastasis of lung adenocarcinoma via the Spi-B/Integrin-β1 signaling pathway. J Biochem Mol Toxicol 2024; 38:e23693. [PMID: 38622980 DOI: 10.1002/jbt.23693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/16/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
IGSF10, a protein that belongs to the immunoglobulin superfamily, is involved in regulating the early migration of neurons that produce gonadotropin-releasing hormone and performs a fundamental function in development. Our previous study confirmed that the mRNA expression level of IGSF10 may be a protective prognosis factor for lung adenocarcinoma (LUAD) patients. However, the specific mechanisms of IGSF10 are still unclear. In this research, it was shown that the protein level of IGSF10 was down-modulated in LUAD tissues and had a link to the clinical and pathological characteristics as well as the patient's prognosis in LUAD. Importantly, IGSF10 regulates the metastatic ability of LUAD cells in vitro and in vivo. It was proven in a mechanistic sense that IGSF10 inhibits the capacity of LUAD cells to metastasize through the Spi-B/Integrin-β1 signaling pathway. These findings gave credence to the premise that IGSF10 performed a crucial function in LUAD.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guangbin Ye
- College of basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chunyan Qin
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xianjiu Liao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ruirui Yang
- Institute of Life Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lili Su
- Institute of Life Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guangzi Qi
- College of public health and management, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Lin Z, Li X, Shi H, Cao R, Zhu L, Dang C, Sheng Y, Fan W, Yang Z, Wu S. Decoding the tumor microenvironment and molecular mechanism: unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses. Front Immunol 2024; 15:1351287. [PMID: 38482016 PMCID: PMC10933018 DOI: 10.3389/fimmu.2024.1351287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cervical carcinoma (CC) represents a prevalent gynecological neoplasm, with a discernible rise in prevalence among younger cohorts observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of CC remains inadequately investigated. Methods We utilized single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to scrutinize the tumor epithelial cells derived from four specimens of cervical carcinoma (CC) patients. This method enabled the identification of pivotal subpopulations of tumor epithelial cells and elucidation of their contributions to CC progression. Subsequently, we assessed the influence of associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and performed cellular experiments for validation purposes. Results Through our analysis, we have discerned C3 PLP2+ Tumor Epithelial Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC), exerting a pivotal influence on the differentiation and progression of CC. We have established an independent prognostic indicator-the PLP2+ Tumor EPCs score. By stratifying patients into high and low score groups based on the median score, we have observed that the high-score group exhibits diminished survival rates compared to the low-score group. The correlations observed between these groups and immune infiltration, enriched pathways, single-nucleotide polymorphisms (SNPs), drug sensitivity, among other factors, further underscore their impact on CC prognosis. Cellular experiments have validated the significant impact of ATF6 on the proliferation and migration of CC cell lines. Conclusion This study enriches our comprehension of the determinants shaping the progression of CC, elevates cognizance of the tumor microenvironment in CC, and offers valuable insights for prospective CC therapies. These discoveries contribute to the refinement of CC diagnostics and the formulation of optimal therapeutic approaches.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinhan Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Renshuang Cao
- Wangjing Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Zhu
- Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxiao Dang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yawen Sheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weisen Fan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | | | - Siyu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wu F, Tian F, Qin C, Qin X, Zeng W, Liu X, Chen C, Lin Y. Peroxiredoxin2 regulates trophoblast proliferation and migration through SPIB-HDAC2 pathway. Exp Cell Res 2023; 422:113428. [PMID: 36400181 DOI: 10.1016/j.yexcr.2022.113428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Adequate proliferation and migration of placental trophoblasts is the prerequisite of a successful pregnancy. Peroxiredoxin2 (Prdx2) is a multi-functional gene involved in various signal events to maintain essential biological functions and normal cellular homeostasis. In this study, substantially lower Prdx2 levels were found in the first trimester cytotrophoblasts of women who suffered from recurrent miscarriage (RM). Prdx2 downregulation inhibited trophoblast proliferation and migration. We demonstrated that histone deacetylase2 (HDAC2) acts downstream of Prdx2 in regulating trophoblast proliferation and migration. HDAC2 deacetylates histone-3-lysine-9 in E-cadherin (E-cad) promoter and reduces the transcription of E-cad epigenetically, whereas it promotes the expression of Slug and Snail genes. These molecular changes may contribute to the trophoblast epithelial-mesenchymal transition. We further verified whether Prdx2 modulated the expression of HDAC2 through SPIB. SPIB could bind to the HDAC2 promoter PU-box region and induce HDAC2 expression. In RM, down-regulated Prdx2 suppresses SPIB-HDAC2 pathway, leading to increased E-cad and decreased Slug and Snail, and eventually restrains trophoblast proliferation and migration. Our study unveils the role of Prdx2-regulated SPIB-HDAC2 pathway in the pathology of RM and provides diagnostic and therapeutic targets for RM as well as other "great obstetrical syndromes" including preeclampsia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Fuju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Chuanmei Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaoli Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, PR China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
5
|
Wang Z, Liu H, Gong Y, Cheng Y. Establishment and validation of an aging-related risk signature associated with prognosis and tumor immune microenvironment in breast cancer. Eur J Med Res 2022; 27:317. [PMID: 36581948 PMCID: PMC9798726 DOI: 10.1186/s40001-022-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly malignant and heterogeneous tumor which is currently the cancer with the highest incidence and seriously endangers the survival and prognosis of patients. Aging, as a research hotspot in recent years, is widely considered to be involved in the occurrence and development of a variety of tumors. However, the relationship between aging-related genes (ARGs) and BC has not yet been fully elucidated. MATERIALS AND METHODS The expression profiles and clinicopathological data were acquired in the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) database. Firstly, the differentially expressed ARGs in BC and normal breast tissues were investigated. Based on these differential genes, a risk model was constructed composed of 11 ARGs via univariate and multivariate Cox analysis. Subsequently, survival analysis, independent prognostic analysis, time-dependent receiver operating characteristic (ROC) analysis and nomogram were performed to assess its ability to sensitively and specifically predict the survival and prognosis of patients, which was also verified in the validation set. In addition, functional enrichment analysis and immune infiltration analysis were applied to reveal the relationship between the risk scores and tumor immune microenvironment, immune status and immunotherapy. Finally, multiple datasets and real-time polymerase chain reaction (RT-PCR) were utilized to verify the expression level of the key genes. RESULTS An 11-gene signature (including FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57, CPLX2 and CCL19) was established to predict the survival of BC patients, which was validated by the GEO cohort. Based on the risk model, the BC patients were divided into high- and low-risk groups, and the high-risk patients showed worse survival. Stepwise ROC analysis and Cox analyses demonstrated the good performance and independence of the model. Moreover, a nomogram combined with the risk score and clinical parameters was built for prognostic prediction. Functional enrichment analysis revealed the robust relationship between the risk model with immune-related functions and pathways. Subsequent immune microenvironment analysis, immunotherapy, etc., indicated that the immune status of patients in the high-risk group decreased, and the anti-tumor immune function was impaired, which was significantly different with those in the low-risk group. Eventually, the expression level of FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57 and CCL19 was identified as down-regulated in tumor cell line, while CPLX2 up-regulated, which was mostly similar with the results in TCGA and Human Protein Atlas (HPA) via RT-PCR. CONCLUSIONS In summary, our study constructed a risk model composed of ARGs, which could be used as a solid model for predicting the survival and prognosis of BC patients. Moreover, this model also played an important role in tumor immunity, providing a new direction for patient immune status assessment and immunotherapy selection.
Collapse
Affiliation(s)
- Zitao Wang
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Hua Liu
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yiping Gong
- grid.412632.00000 0004 1758 2270Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yanxiang Cheng
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
6
|
Ding M, Li Q, Tan X, Zhang L, Tan J, Zheng L. Comprehensive pan-cancer analysis reveals the prognostic value and immunological role of SPIB. Aging (Albany NY) 2022; 14:6338-6357. [PMID: 35969172 PMCID: PMC9417235 DOI: 10.18632/aging.204225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
It is well-established that SPIB is essential for the survival of mature B cells, playing a key role in diffuse large B-cell lymphoma, colorectal cancer, and lung cancer. However, no study has hitherto conducted a systematic pan-cancer analysis on SPIB. Herein, we analyzed the differential expression of SPIB in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases and found that SPIB was significantly upregulated in most cancers. In addition, SPIB was positively or negatively associated with prognosis in different cancers. We found that SPIB was significantly associated with tumor immune infiltration and immune checkpoint genes in more than 35 tumors by TIMER database analysis. In addition, SPIB was negatively correlated with Tumor mutational burden (TMB) and Microsatellite instability (MSI) in most tumors. Finally, GO/KEGG enrichment analysis revealed the possible involvement of SPIB in NF-kappa B and B-cell receptor signaling pathways. In conclusion, our comprehensive pan-cancer analysis of SPIB reveals its important role in tumor immunity, suggesting it has huge prospects for clinical application in cancer therapy.
Collapse
Affiliation(s)
- Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiao Tan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Liangyua Zhang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Jun Tan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Wang J, Wang X, Guo Y, Ye L, Li D, Hu A, Cai S, Yuan B, Jin S, Zhou Y, Li Q, Zheng L, Tong Q. Therapeutic targeting of SPIB/SPI1-facilitated interplay of cancer cells and neutrophils inhibits aerobic glycolysis and cancer progression. Clin Transl Med 2021; 11:e588. [PMID: 34841706 PMCID: PMC8567044 DOI: 10.1002/ctm2.588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND As a metabolic reprogramming feature, cancer cells derive most of their energy from aerobic glycolysis, while its regulatory mechanisms and therapeutic strategies continue to be illusive. METHODS Integrative analysis of publically available expression profile datasets was used to identify critical transcriptional regulators and their target glycolytic enzymes. The functions and acting mechanisms of transcriptional regulators in cancer cells were investigated by using in vitro and in vivo assays. The Kaplan-Meier curve and log-rank assay were used to conduct the survival study. RESULTS Salmonella pathogenicity island 1 (SPI1/PU.1), a haematopoietic transcription factor, was identified to facilitate glycolytic process, tumourigenesis, invasiveness, as well as metastasis of colon cancer cells, which was interplayed by tumour-associated neutrophils. Mechanistically, neutrophils delivered SPI1 mRNA via extracellular vesicles, resulting in enhanced SPI1 expression of cancer cells. Through physical interaction with SPI1-related protein (SPIB), SPI1 drove expression of glycolytic genes within cancer cells, which in turn induced polarization of neutrophils via glycolytic metabolite lactate. Depletion of neutrophils or SPIB-SPI1 interaction in cancer cells significantly inhibited glycolytic process, tumourigenesis and aggressiveness. Upregulation of SPI1 or SPIB was found to be associated with poor prognosis in patients suffering from colon cancer. CONCLUSIONS Therapeutic targeting of SPIB/SPI1-facilitated interplay of cancerous cells and neutrophils suppresses aerobic glycolysis and progression of cancer.
Collapse
Affiliation(s)
- Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Shuang Cai
- Department of Pathology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Boling Yuan
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Shikai Jin
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei Province430022P. R. China
| |
Collapse
|
8
|
Zhao X, Li L, Yuan S, Zhang Q, Jiang X, Luo T. SPIB acts as a tumor suppressor by activating the NFkB and JNK signaling pathways through MAP4K1 in colorectal cancer cells. Cell Signal 2021; 88:110148. [PMID: 34530056 DOI: 10.1016/j.cellsig.2021.110148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Spi-B transcription factor (SPIB) is a member of the E-twenty-six (ETS) transcription factor family. Previous studies have shown that the expression of SPIB is downregulated in human colorectal cancer tissues. The purpose of our study was to explore the biological function and related mechanism of SPIB in colorectal cancer cells. Our study found that SPIB could inhibit the proliferation, migration and invasion of CRC cells; inhibit angiogenesis; and induce CRC cells cycle arrest in G2/M phase and promote the apoptosis of CRC cells. We also found that compared with the control group, the 50% inhibitory concentration (IC50) values of oxaliplatin and 5-FU in the SPIB overexpression group were significantly reduced. Western blot results showed that the overexpression of SPIB upregulated cleaved-PARP(c-PARP), nuclear factor kB p65 (NFkB p65), phospho-NFkB p65 (p-NFkB P65), JNK1, and C-Jun protein expression levels compared with the control group. The silence of SPIB downregulated c-PARP, NFκB p65, p-NFκB p65, JNK1, and C-Jun protein expression levels. A dual-luciferase reporter assay showed that SPIB could activate the promoter of MAP4K1 and enhance the expression of MAP4K1. After silencing MAP4K1, the protein expression levels of c-PARP, NFkB P65, p-NFkB P65, JNK1, and C-Jun were downregulated. In summary, we found that SPIB is a tumor suppressor in colorectal cancer cells and that SPIB sensitizes colorectal cancer cells to oxaliplatin and 5-FU, SPIB exerts its anti-colorectal cancer effect by activating the NFkB and JNK signaling pathways through MAP4K1. The above findings may provide a reference for new molecular markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Xunping Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qia Zhang
- Department of Medical Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 404000, People's Republic of China
| | - Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Wu Y, Uddin MN, Chen R, Hao JP. Identification of Potential Key Genes and Regulatory Markers in Essential Thrombocythemia Through Integrated Bioinformatics Analysis and Clinical Validation. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:767-784. [PMID: 34267539 PMCID: PMC8275175 DOI: 10.2147/pgpm.s309166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Introduction Essential thrombocytosis (ET) is a group of myeloproliferative neoplasms characterized by abnormal proliferation of platelet and megakaryocytes. Research on potential key genes and novel regulatory markers in essential thrombocythemia (ET) is still limited. Methods Downloading array profiles from the Gene Expression Omnibus database, we identified the differentially expressed genes (DEGs) through comprehensive bioinformatic analysis. GO, and REACTOME pathway enrichment analysis was used to predict the potential functions of DEGs. Besides, constructing a protein–protein interaction (PPI) network through the STRING database, we validated the expression level of hub genes in an independent cohort of ET, and the transcription factors (TFs) were detected in the regulatory networks of TFs and DEGs. And the candidate drugs that are targeting hub genes were identified using the DGIdb database. Results We identified 63 overlap DEGs that included 21 common up-regulated and 42 common down-regulated genes from two datasets. Functional enrichment analysis shows that the DEGs are mainly enriched in the immune system and inflammatory processes. Through PPI network analysis, ACTB, PTPRC, ACTR2, FYB, STAT1, ETS1, IL7R, IKZF1, FGL2, and CTSS were selected as hub genes. Interestingly, we found that the dysregulated hub genes are also aberrantly expressed in a bone marrow cohort of ET. Moreover, we found that the expression of CTSS, FGL2, IKZF1, STAT1, FYB, ACTR2, PTPRC, and ACTB genes were significantly under-expressed in ET (P<0.05), which is consistent with our bioinformatics analysis. The ROC curve analysis also shows that these hub genes have good diagnostic value. Besides, we identified 4 TFs (SPI1, IRF4, SRF, and AR) as master transcriptional regulators that were associated with regulating the DEGs in ET. Cyclophosphamide, prednisone, fluorouracil, ruxolitinib, and lenalidomide were predicted as potential candidate drugs for the treatment of ET. Discussion These dysregulated genes and predicted key regulators had a significant relationship with the occurrence of ET with affecting the immune system and inflammation of the processes. Some of the immunomodulatory drugs have potential value by targeting ACTB, PTPRC, IL7R, and IKZF1 genes in the treatment of ET.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| |
Collapse
|
10
|
Ho YJ, Chang J, Yeh KT, Gong Z, Lin YM, Lu JW. Prognostic and Clinical Implications of WNK Lysine Deficient Protein Kinase 1 Expression in Patients With Hepatocellular Carcinoma. In Vivo 2021; 34:2631-2640. [PMID: 32871793 DOI: 10.21873/invivo.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a particularly malignant form of cancer prevalent throughout the world; however, there is a pressing need for HCC biomarkers to facilitate prognosis and risk assessment. PATIENTS AND METHODS This paper reports on the potential prognostic value of WNK lysine deficient protein kinase 1 (WNK1) in cases of HCC. We analyzed the expression of WNK1 at the mRNA level using omics data from the UALCAN database. We then verified our findings through the immunohistochemical (IHC) staining of various human cancer tissue as well as 59 HCC samples paired with corresponding normal tissues. The prognostic value of mRNA or protein expression by WNK1 was evaluated using the Kaplan-Meier method. RESULTS Initial screening results revealed significantly higher WNK1 expression levels in HCC tissue compared to normal tissue. Verification using the paired HCC samples confirmed that the expression of WNK1 was indeed significantly higher in HCC tissue samples than in adjacent normal tissues. High WNK1 expression levels were significantly correlated with clinicopathological variables, including gender and histologic grade. Kaplan-Meier survival analysis revealed that high WNK1 expression levels were associated with poor HCC prognosis. Finally, univariate and multivariate analysis identified WNK1 as a prognostic factor for TNM stage in cases of HCC. CONCLUSION In summary, WNK1 is overexpressed at the mRNA and protein levels, and correlated with poor prognosis. Thus, WNK1 expression could potentially be used as a biomarker in HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Huang Q, Liu J, Wu S, Zhang X, Xiao Z, Liu Z, Du W. Spi-B Promotes the Recruitment of Tumor-Associated Macrophages via Enhancing CCL4 Expression in Lung Cancer. Front Oncol 2021; 11:659131. [PMID: 34141615 PMCID: PMC8205110 DOI: 10.3389/fonc.2021.659131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
Tumor immune escape plays a critical role in malignant tumor progression and leads to the failure of anticancer immunotherapy. Spi-B, a lymphocyte lineage-specific Ets transcription factor, participates in mesenchymal invasion and favors metastasis in human lung cancer. However, the mechanism through which Spi-B regulates the tumor immune environment has not been elucidated. In this study, we demonstrated that Spi-B enhanced the infiltration of tumor-associated macrophages (TAMs) in the tumor microenvironment using subcutaneous mouse models and clinical samples of human lung cancer. Spi-B overexpression increased the expression of TAM polarization- and recruitment-related genes, including CCL4. Moreover, deleting CCL4 inhibited the ability of Spi-B promoting macrophage infiltration. These data suggest that Spi-B promotes the recruitment of TAMs to the tumor microenvironment via upregulating CCL4 expression, which contributes to the progression of lung cancer.
Collapse
Affiliation(s)
- Qiumin Huang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junrong Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shuainan Wu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuexi Zhang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zengtuan Xiao
- Department of Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Tianjin, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Lucendo-Villarin B, Nell P, Hellwig B, Filis P, Feuerborn D, O'Shaughnessy PJ, Godoy P, Rahnenführer J, Hengstler JG, Cherianidou A, Sachinidis A, Fowler PA, Hay DC. Genome-wide expression changes induced by bisphenol A, F and S in human stem cell derived hepatocyte-like cells. EXCLI JOURNAL 2020; 19:1459-1476. [PMID: 33312107 PMCID: PMC7726493 DOI: 10.17179/excli2020-2934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The debate about possible adverse effects of bisphenol A (BPA) has been ongoing for decades. Bisphenol F (BPF) and S (BPS) have been suggested as “safer” alternatives. In the present study we used hepatocyte-like cells (HLCs) derived from the human embryonic stem cell lines Man12 and H9 to compare the three bisphenol derivatives. Stem cell-derived progenitors were produced using an established system and were exposed to BPA, BPF and BPS for 8 days during their transition to HLCs. Subsequently, we examined cell viability, inhibition of cytochrome P450 (CYP) activity, and genome-wide RNA profiles. Sub-cytotoxic, inhibitory concentrations (IC50) of CYP3A were 20, 9.5 and 25 µM for BPA, BPF and BPS in Man12 derived HLCs, respectively. The corresponding concentrations for H9-derived HLCs were 19, 29 and 31 µM. These IC50 concentrations were used to study global expression changes in this in vitro study and are higher than unconjugated BPA in serum of the general population. A large overlap of up- as well as downregulated genes induced by the three bisphenol derivatives was seen. This is at least 28-fold higher compared to randomly expected gene expression changes. Moreover, highly significant correlations of expression changes induced by the three bisphenol derivatives were obtained in pairwise comparisons. Dysregulated genes were associated with reduced metabolic function, cellular differentiation, embryonic development, cell survival and apoptosis. In conclusion, no major differences in cytochrome inhibitory activities of BPA, BPF and BPS were observed and gene expression changes showed a high degree of similarity.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - P Nell
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - B Hellwig
- Department of Statistics, Technical University Dortmund, Dortmund, Germany
| | - P Filis
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - D Feuerborn
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, UK
| | - P Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - J Rahnenführer
- Department of Statistics, Technical University Dortmund, Dortmund, Germany
| | - J G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - A Cherianidou
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - A Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - P A Fowler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - D C Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Zhang B, Wang Q, Fu C, Jiang C, Ma S. Exploration of the immune-related signature and immune infiltration analysis for breast ductal and lobular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:730. [PMID: 32042746 DOI: 10.21037/atm.2019.11.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background In this study, we aimed to explore the tumour associated immune signature of breast cancer (BC) and conduct integrative analyses with immune infiltrates in BC. Methods We downloaded the transcriptome profiling and clinical data of BC from The Cancer Genome Atlas (TCGA) database. The list of immune-related signatures was from the Innate database. The limma package was utilized to conduct the normalization, and we screened the differential immune signatures in BC. A univariate Cox regression model and the LASSO method were used to find the hub prognostic immune genes. The TAIG risk model was calculated based on the multivariate Cox regression results, and a receiver operating characteristic (ROC) curve was generated to assess the predictive power of TAIG. Moreover, we also conducted a correlation analysis between TAIG and the clinical characteristics. Additionally, we utilized the METABRIC cohort as the validation data set. The TIMER database is a comprehensive resource for performing systematic analyses of immune infiltrates across various malignancies. We evaluated the associations of immune signatures with several immune cells based on TIMER. Furthermore, we used the CIBERSORT algorithm to determine the fractions of immune cells in each sample and compared the differential distributions of immune infiltrates between two TAIG groups using the Wilcoxon rank-sum test. Results A total of 1,178 samples were obtained from the TCGA-BRCA database, but only 1,045 breast tumour samples were matched with complete transcriptome expression data. Meanwhile, we collected a total of 1,094 BC patients from the METABRIC cohort. We found a list of 1,399 differential immune signatures associated with survival, and functional analysis revealed that these genes participated in cytokine-cytokine receptor interactions, Th1 and Th2 cell differentiation and the JAK-STAT signalling pathway. The TAIG risk model was established from the multivariate Cox analysis, and we observed that high TAIG levels correlated with poor survival outcomes based on Kaplan-Meier analysis. The Kruskal-Wallis test suggested that high TAIG levels correlated with high AJCC-TNM stages and advanced pathological stages (P<0.01). We validated the well robustness of TAIG in METABRIC cohort and 5-year AUC reached up to 0.829. Moreover, we further uncovered the associations of hub immune signatures with immune cells and calculated the immune cell fractions in specific tumour samples based on gene signature expression. Last, we used the Wilcoxon rank-sum test to compare the differential immune density in the two groups and found that several immune cells had a significantly lower infiltrating density in the high TAIG groups, including CD8+ T cells (P=0.031), memory resting CD4+ T cells (P=0.026), M0 macrophages (P=0.023), and M2 macrophages (P=0.048). Conclusions In summary, we explored the immune signature of BC and constructed a TAIG risk model to predict prognosis. Moreover, we integrated the identified immune signature with tumour-infiltrating immune cells and found adverse associations between the TAIG levels and immune cell infiltrating density.
Collapse
Affiliation(s)
- Bochuan Zhang
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang 110161, China
| | - Qingfeng Wang
- Basic Medical College Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Chenghao Fu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Chunying Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang 110161, China.,College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
14
|
Zhao C, Lou Y, Wang Y, Wang D, Tang L, Gao X, Zhang K, Xu W, Liu T, Xiao J. A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med 2018; 8:200-208. [PMID: 30575323 PMCID: PMC6346244 DOI: 10.1002/cam4.1932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Lou
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Gao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Ho YJ, Lin YM, Huang YC, Shi B, Yeh KT, Gong Z, Lu JW. Prognostic significance of high YY1AP1 and PCNA expression in colon adenocarcinoma. Biochem Biophys Res Commun 2017; 494:173-180. [PMID: 29037809 DOI: 10.1016/j.bbrc.2017.10.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
To investigate the relationship between YY1AP1 and various clinicopathological features of colon adenocarcinoma (COAD), we conducted immunohistochemical (IHC) analyses of human tissue microarrays. We found that YY1AP1 protein expression was significantly higher in tumor tissue of the colon and liver, and was significantly lower in tumor tissue of the kidney. An analysis that employed the SurvExpress database indicated that increased expression of YY1AP1 mRNA was significantly associated with the overall survival of COAD patients. To clarify the validity of YY1AP1 or PCNA as determined by the IHC analysis was performed on 59 paired samples from COAD and adjacent normal tissue. Statistically significant differences of immunoreactivity for YY1AP1 or PCNA protein expression was observed between COAD tissue and adjacent normal tissue. High protein expression levels of YY1AP1 and PCNA were also found to be significantly correlated with M-class and distant metastasis. We also determined that YY1AP1 was correlated with PCNA expression in COAD samples, and Kaplan-Meier survival curves indicated that YY1AP1 protein expression was significantly associated with poor survival. Finally, a univariate analysis demonstrated that YY1AP1 protein expression was related to YY1AP1 score, and multivariate analysis revealed that the YY1AP1 protein expression level was an independent risk factor of overall COAD survival. Taken together, our findings indicate that YY1AP1 expression plays an important role in the tumorigenesis and progression of COAD and could serve as a clinical prognostic indicator for COAD.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yen-Chi Huang
- Department of Styling & Cosmetology, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, PR China
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Expressions Profiles of the Proteins Associated with Carbohydrate Metabolism in Rat Liver Regeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8428926. [PMID: 28752099 PMCID: PMC5511655 DOI: 10.1155/2017/8428926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 05/28/2017] [Indexed: 01/20/2023]
Abstract
Liver has a very amazing ability to regenerate from the remnant liver after injury or partial hepatectomy (PH). Carbohydrate metabolism plays a critical role in regeneration. Many signaling pathways are involved in the metabolism process. We analyzed the changes of proteins at 0–36 h after PH in rats using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS-based quantitative proteomics strategy. The results showed that 110 proteins and 5 signaling pathways related to carbohydrate metabolism in rat LR changed significantly. Based on a motif discovery method performed by iRegulon, we identified for the first time that the transcription factor SPIB whose motif was enriched among the differentiated genes associated with carbohydrate metabolism may play an important role in liver regeneration for the first time. The findings of this research provide a molecular basis for further unrevealing the mechanism of regeneration at priming stage (0–6 h) and proliferation stage (6–36 h) of LR in rats. At the same time, our studies provide more novel evidence for the signaling pathways which regulate carbohydrate metabolism from proteomics level. This study can provide some new thinking of liver regeneration and treatment of diseases associated with glucose metabolism.
Collapse
|
17
|
Du W, Xu X, Niu Q, Zhang X, Wei Y, Wang Z, Zhang W, Yan J, Ru Y, Fu Z, Li X, Jiang Y, Ma Z, Zhang Z, Yao Z, Liu Z. Spi-B-Mediated Silencing of Claudin-2 Promotes Early Dissemination of Lung Cancer Cells from Primary Tumors. Cancer Res 2017; 77:4809-4822. [PMID: 28754672 DOI: 10.1158/0008-5472.can-17-0020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Dissociation from epithelial sheets and invasion through the surrounding stroma are critical early events during epithelial cancer metastasis. Here we find that a lymphocyte lineage-restricted transcription factor, Spi-B, is frequently expressed in human lung cancer tissues. The Spi-B-expressing cancer cells coexpressed vimentin but repressed E-cadherin and exhibited invasive behavior. Increased Spi-B expression was associated with tumor grade, lymphatic metastasis, and short overall survival. Mechanistically, Spi-B disrupted intercellular junctions and enhanced invasiveness by reconfiguring the chromatin structure of the tight junction gene claudin-2 (CLDN2) and repressing its transcription. These data suggest that Spi-B participates in mesenchymal invasion, linking epithelial cancer metastasis with a lymphatic transcriptional program. Cancer Res; 77(18); 4809-22. ©2017 AACR.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Apoptosis
- Biomarkers, Tumor
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/secondary
- Cell Proliferation
- Claudin-2/genetics
- Claudin-2/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Junctions
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Neoplasm Invasiveness
- Neoplasm Staging
- Prognosis
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/secondary
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xing Xu
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Niu
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xuexi Zhang
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yiliang Wei
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ziqiao Wang
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Yan
- Department of Pathology, Tianjin First Center Hospital, Tianjin, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zheng Fu
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xiaobo Li
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuan Jiang
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Shangkuan WC, Lin HC, Chang YT, Jian CE, Fan HC, Chen KH, Liu YF, Hsu HM, Chou HL, Yao CT, Chu CM, Su SL, Chang CW. Risk analysis of colorectal cancer incidence by gene expression analysis. PeerJ 2017; 5:e3003. [PMID: 28229027 PMCID: PMC5314952 DOI: 10.7717/peerj.3003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/19/2017] [Indexed: 01/14/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading cancers worldwide. Several studies have performed microarray data analyses for cancer classification and prognostic analyses. Microarray assays also enable the identification of gene signatures for molecular characterization and treatment prediction. Objective Microarray gene expression data from the online Gene Expression Omnibus (GEO) database were used to to distinguish colorectal cancer from normal colon tissue samples. Methods We collected microarray data from the GEO database to establish colorectal cancer microarray gene expression datasets for a combined analysis. Using the Prediction Analysis for Microarrays (PAM) method and the GSEA MSigDB resource, we analyzed the 14,698 genes that were identified through an examination of their expression values between normal and tumor tissues. Results Ten genes (ABCG2, AQP8, SPIB, CA7, CLDN8, SCNN1B, SLC30A10, CD177, PADI2, and TGFBI) were found to be good indicators of the candidate genes that correlate with CRC. From these selected genes, an average of six significant genes were obtained using the PAM method, with an accuracy rate of 95%. The results demonstrate the potential of utilizing a model with the PAM method for data mining. After a detailed review of the published reports, the results confirmed that the screened candidate genes are good indicators for cancer risk analysis using the PAM method. Conclusions Six genes were selected with 95% accuracy to effectively classify normal and colorectal cancer tissues. We hope that these results will provide the basis for new research projects in clinical practice that aim to rapidly assess colorectal cancer risk using microarray gene expression analysis.
Collapse
Affiliation(s)
| | - Hung-Che Lin
- National Defense Medical Center, Taipei, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Tien Chang
- National Defense Medical Center, Taipei, Taiwan; Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chen-En Jian
- National Defense Medical Center, Taipei, Taiwan; Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Wuchi, Taichung, Taiwan; Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Wuchi, Taichung, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kang-Hua Chen
- Department of Nursing, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Ya-Fang Liu
- Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huan-Ming Hsu
- National Defense Medical Center, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Hsiu-Ling Chou
- Department of Nursing, Far Eastern Memorial Hospital and Oriental Institute of Technology , New Taipei City , Taiwan
| | - Chung-Tay Yao
- Department of Emergency, Cathay General Hospital and School of Medicine, Fu-Jen Catholic University , Taipei , Taiwan
| | - Chi-Ming Chu
- National Defense Medical Center, Taipei, Taiwan; Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Sui-Lung Su
- National Defense Medical Center, Taipei, Taiwan; Section of Biostatistics and Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Wen Chang
- RN, PhD, Assistant Professor, School of Nursing, College of Medicine, Chang Gung University & Assistant Research Fellow, Division of Endocrinology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital , Taiwan
| |
Collapse
|