1
|
Indrakumar S, Gugulothu SB, Joshi A, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Composite-Based Multifunctional Pellets for Controlled Release. Macromol Biosci 2024:e2400410. [PMID: 39427344 DOI: 10.1002/mabi.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Chronic wounds present significant clinical challenges due to the high risk of infections and persistent inflammation. While personalized treatments in point-of-care settings are crucial, they are limited by the complex fabrication techniques of the existing products. The calcium sulfate hemihydrate (CSH)-based drug delivery platform enables rapid fabrication but lacks antioxidant and antibacterial properties, essential to promote healing. To develop a multifunctional platform, a tannic acid (TA)-silk fibroin (SF) complex is engineered and incorporated as an additive in CSH cement. This cement is then cast into pellets to create silk/bioceramic-based composite drug delivery systems, designed for point-of-care use. Compared to neat CSH pellets, the composite pellets exhibit a 7.5-fold increase in antioxidant activity and prolonged antibacterial efficacy (up to 13 d). Moreover, the subcutaneous implantation of the pellets shows no hallmarks of local or systemic toxicity in a rodent model. The pellets are optimized in composition and fabrication to ease market translation. Clinically, the pellets have the potential to be further developed into products to place on wound beds or fill into bone cavities that are designed to deliver the intended therapeutic effect. The developed multifunctional system proves to be a promising solution for personalized treatment in point-of-care settings.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | | | - Akshat Joshi
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Gundu S, Sahi AK, Kumari P, Tekam CS, Allu I, Singh R, Mahto SK. In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1922-1946. [PMID: 38970296 DOI: 10.1080/09205063.2024.2363080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/28/2024] [Indexed: 07/08/2024]
Abstract
Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chandrakant Singh Tekam
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ishita Allu
- Department of Biomedical Engineering, University of Engineering (UCE), Osmania University, Hyderabad, India
| | - Richa Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
3
|
Zhao J, Lu F, Dong Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 2024; 21:395-408. [PMID: 38032533 PMCID: PMC10987464 DOI: 10.1007/s13770-023-00607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem. METHODS This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE. RESULTS Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies. CONCLUSION Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Moura D, Rohringer S, Ferreira HP, Pereira AT, Barrias CC, Magalhães FD, Bergmeister H, Gonçalves IC. Long-term in vivo degradation and biocompatibility of degradable pHEMA hydrogels containing graphene oxide. Acta Biomater 2024; 173:351-364. [PMID: 37984630 DOI: 10.1016/j.actbio.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Developing biocompatible, non-fouling and biodegradable hydrogels for blood-contacting devices remains a demanding challenge. Such materials should promote natural healing, prevent clotting, and undergo controlled degradation. This study evaluates the biocompatibility and biodegradation of degradable poly(2-hydroxyethyl methacrylate) (d-pHEMA) hydrogels with or without reinforcement with oxidized few-layer graphene (d-pHEMA/M5ox) in a long term implantation in rats, assessing non-desired side-effects (irritation, chronic toxicity, immune response). Subcutaneous implantation over 6 months revealed degradation of both hydrogels, despite slower for d-pHEMA/M5ox, with degradation products found in intracellular vesicles. No inflammation nor infection at implantation areas were observed, and no histopathological findings were detected in parenchymal organs. Immunohistochemistry confirmed d-pHEMA and d-pHEMA/M5ox highly anti-adhesiveness. Gene expression of macrophages markers revealed presence of both M1 and M2 macrophages at all timepoints. M1/M2 profile after 6 months reveals an anti-inflammatory environment, suggesting no chronic inflammation, as also demonstrated by cytokines (IL-α, TNF-α and IL-10) analysis. Overall, modification of pHEMA towards a degradable material was successfully achieved without evoking a loss of its inherent properties, specially its anti-adhesiveness and biocompatibility. Therefore, these hydrogels hold potential as blank-slate for further modifications that promote cellular adhesion/proliferation for tissue engineering applications, namely for designing blood contacting devices with different load bearing requirements. STATEMENT OF SIGNIFICANCE: Biocompatibility, tunable biodegradation kinetics, and suitable immune response with lack of chronic toxicity and irritation, are key features in degradable blood contact devices that demand long-term exposure. We herein evaluate the 6-month in vivo performance of a degradable and hemocompatible anti-adhesive hydrogel based in pHEMA, and its mechanically reinforced formulation with few-layer graphene oxide. This subcutaneous implantation in a rat model, shows gradual degradation with progressive changes in material morphology, and no evidence of local inflammation in surrounding tissue, neither signs of inflammation or adverse reactions in systemic organs, suggesting biocompatibility of degradation products. Such hydrogels exhibit great potential as a blank slate for tissue engineering applications, including for blood contact, where cues for specific cells can be incorporated.
Collapse
Affiliation(s)
- Duarte Moura
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Sabrina Rohringer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Helena P Ferreira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-180, Portugal.
| |
Collapse
|
5
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering (Basel) 2023; 10:394. [PMID: 37106581 PMCID: PMC10136332 DOI: 10.3390/bioengineering10040394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Chern Chung Ong
- Fabbxible Technology, 11a Jalan IKS Bukit Tengah, Tmn IKS Bukit Tengah, Bukit Mertajam 14000, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
6
|
Nguyen M, Tong A, Volosov M, Madhavarapu S, Freeman J, Voronov R. Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants in vivo. BIOMICROFLUIDICS 2023; 17:024103. [PMID: 37035100 PMCID: PMC10076065 DOI: 10.1063/5.0137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
Tissue regeneration-promoting and drug-eluting biomaterials are commonly implanted into animals as a part of late-stage testing before committing to human trials required by the government. Because the trials are very expensive (e.g., they can cost over a billion U.S. dollars), it is critical for companies to have the best possible characterization of the materials' safety and efficacy before it goes into a human. However, the conventional approaches to biomaterial evaluation necessitate sacrificial analysis (i.e., euthanizing a different animal for measuring each time point and retrieving the implant for histological analysis), due to the inability to monitor how the host tissues respond to the presence of the material in situ. This is expensive, inaccurate, discontinuous, and unethical. In contrast, our manuscript presents a novel microfluidic platform potentially capable of performing non-disruptive fluid manipulations within the spatial constraints of an 8 mm diameter critical calvarial defect-a "gold standard" model for testing engineered bone tissue scaffolds in living animals. In particular, here, addressable microfluidic plumbing is specifically adapted for the in vivo implantation into a simulated rat's skull, and is integrated with a combinatorial multiplexer for a better scaling of many time points and/or biological signal measurements. The collected samples (modeled as food dyes for proof of concept) are then transported, stored, and analyzed ex vivo, which adds previously-unavailable ease and flexibility. Furthermore, care is taken to maintain a fluid equilibrium in the simulated animal's head during the sampling to avoid damage to the host and to the implant. Ultimately, future implantation protocols and technology improvements are envisioned toward the end of the manuscript. Although the bone tissue engineering application was chosen as a proof of concept, with further work, the technology is potentially versatile enough for other in vivo sampling applications. Hence, the successful outcomes of its advancement should benefit companies developing, testing, and producing vaccines and drugs by accelerating the translation of advanced cell culturing tech to the clinical market. Moreover, the nondestructive monitoring of the in vivo environment can lower animal experiment costs and provide data-gathering continuity superior to the conventional destructive analysis. Lastly, the reduction of sacrifices stemming from the use of this technology would make future animal experiments more ethical.
Collapse
Affiliation(s)
- Minh Nguyen
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, 161 Warren Street, Newark, New Jersey 07102, USA
| | - Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, 161 Warren Street, Newark, New Jersey 07102, USA
| | - Mark Volosov
- Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology Newark College of Engineering, Suite 200 University Heights, Newark, New Jersey 07102, USA
| | - Shreya Madhavarapu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joseph Freeman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Roman Voronov
- Author to whom correspondence should be addressed:. Tel.: +1 973 642 4762; Fax:+1 973 596 8436
| |
Collapse
|
7
|
Henckes NAC, Chuang L, Bosak I, Carazzai R, Garcez T, Kuhl CP, de Oliveira FDS, Loureiro Dos Santos LA, Visioli F, Cirne-Lima EO. Tissue engineering application combining epoxidized natural rubber blend and mesenchymal stem cells in in vivo response. J Biomater Appl 2022; 37:698-711. [PMID: 35733325 DOI: 10.1177/08853282221110476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate biocompatibility, integration, and tissue host response of the Poly (Lactic-co-Glycolic acid) (PLGA)/Poly (isoprene) (PI) epoxidized (PLGA/PIepox) innovative scaffold combined with adipose derived mesenchymal stem cells (ADSC). We implanted the scaffold subcutaneously on the back of 18 female rats and monitored them for up to 14 days. When compared to controls, PLGA/PIepox + ADSC demonstrated an earlier vascularization, a tendency of inflammation reduction, an adequate tissue integration, higher cell proliferation, and a tendency of expression of collagen decreasing. However, 14 days post-implantation we found similar levels of CD31, Ki67 and AE1/AE3 in PLGA/PIepox when compared to control groups. The interesting results, lead us to the assumption that PLGA/PIepox is able to provide an effective delivery system for ADSC on tissue host. This animal study assesses PLGA/PIepox + ADSC in in vivo tissue functionality and validation of use, serving as a proof of concept for future clinical translation as it presents an innovative and promising tissue engineering opportunity for the use in tissue reconstruction.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Chuang
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Isadora Bosak
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Carazzai
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tuane Garcez
- Unidade de Experimentação Animal - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Dos Santos de Oliveira
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Alberto Loureiro Dos Santos
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Visioli
- Unidade de Patologia Experimental - Centro de Pesquisa Experimental, 37895Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Odontologia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Hneda D, Gomes JR. Evaluation of the inflammatory process, collagen production, and MMP-2 and MMP-9 expressions produced by Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Acta Histochem 2022; 124:151882. [PMID: 35339777 DOI: 10.1016/j.acthis.2022.151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
The subcutaneous rat implanted model is a preclinical approach used in studies to characterize the histocompatibility of materials that could be used as biomaterials. Biomaterials are obtained synthetically or from the environment, and they can be used to treat or replace any tissues or organs that the body has lost. To execute their roles, the biomaterials must present any level of histocompatibility and a lower level of inflammatory reaction. This work aimed to evaluate some aspects of histocompatibility, such as the inflammatory process, collagen production, and MMP-2 and 9 expression as responses to the Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Luffa fragments were implanted into the dorsal subcutaneous region of twelve male Wistar rats, and the number of eosinophils, mast cells, the production of collagen to form the fibrous capsule, and the expression of MMP-2 and MMP-9 were evaluated on the 15th, 45th, and 90th days. Results showed statistical differences (p < 0.05) in the number of eosinophils and mast cells present inside and outside the fibrous capsule among the days evaluated. The permanent presence of macrophages and giant foreign body cells circumjacent to all implants was also observed. A progressive increase in the production of collagen was also detected, along with a significant reduction on day 90 (p < 0.05). The expression of MMP-9 was detected as being specifically expressed in the giant foreign body cells on all days evaluated, while the expression of MMP-2 was detected in fat cells present around the implants, mainly on day 90. Taken together, these results indicate a general reduction level for the inflammatory process during the days evaluated, which allows us to conclude that Luffa, being a natural product that is simple to obtain, could be a potential candidate to become a biomaterial to be tested in further approaches.
Collapse
|
9
|
Bousnaki M, Beketova A, Kontonasaki E. A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration. Biomolecules 2022; 12:435. [PMID: 35327627 PMCID: PMC8945901 DOI: 10.3390/biom12030435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Collapse
Affiliation(s)
| | | | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.B.); (A.B.)
| |
Collapse
|
10
|
Yergeshov AA, Zoughaib M, Ishkaeva RA, Savina IN, Abdullin TI. Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels 2022; 8:118. [PMID: 35200498 PMCID: PMC8872170 DOI: 10.3390/gels8020118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Divalent trace metals (TM), especially copper (Cu), cobalt (Co) and zinc (Zn), are recognized as essential microelements for tissue homeostasis and regeneration. To achieve a balance between therapeutic activity and safety of administered TMs, effective gel formulations of TMs with elucidated regenerative mechanisms are required. We studied in vitro and in vivo effects of biodegradable macroporous cryogels doped with Cu, Co or Zn in a controllable manner. The extracellular ROS generation by metal dopants was assessed and compared with the intracellular effect of soluble TMs. The stimulating ability of TMs in the cryogels for cell proliferation, differentiation and cytokine/growth factor biosynthesis was characterized using HSF and HUVEC primary human cells. Multiple responses of host tissues to the TM-doped cryogels upon subcutaneous implantation were characterized taking into account the rate of biodegradation, production of HIF-1α/matrix metalloproteinases and the appearance of immune cells. Cu and Zn dopants did not disturb the intact skin organization while inducing specific stimulating effects on different skin structures, including vasculature, whereas Co dopant caused a significant reorganization of skin layers, the appearance of multinucleated giant cells, along with intense angiogenesis in the dermis. The results specify and compare the prooxidant and regenerative potential of Cu, Co and Zn-doped biodegradable cryogels and are of particular interest for the development of advanced bioinductive hydrogel materials for controlling angiogenesis and soft tissue growth.
Collapse
Affiliation(s)
- Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Rezeda A. Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Irina N. Savina
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| |
Collapse
|
11
|
Kheirjou R, Rad JS, Khosroshahi AF, Davaran S, Roshangar L. Evaluation the ability of acellular ovine small intestine submucosa to load and release of mineral pitch and its anti-inflammatory effects. Cell Tissue Bank 2022; 23:541-555. [PMID: 35083606 DOI: 10.1007/s10561-021-09985-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
Injury from the severe burn is exacerbated by a persistent inflammatory response. This response is mediated by cytokines and chemokines, which are released from various immune cells, including mast cells. In this study, the ability of the acellular ovine small intestine submucosa (AOSIS) to load and release of Mineral Pitch (MP) was first investigated, and it was found that the preparation of the scaffold by a modified method enables it to load and release water-soluble drugs. Then, 32 male Wistar rats were divided into four groups, a third-degree burn was created, and except for the control group, the others were treated with: AOSIS, WJ-MSCs seeded AOSIS, or AOSIS loaded with WJ-MSCs and MP. Wound sampling on the 5th day after treatment showed that the number of intact and degranulated mast cells in the treatment groups was associated with a decrease compared to the control group. In the last group, this decrease was the largest (and statically significant (p < 0.05)). Also, by measuring the level of inflammatory factors in blood serum, it was found that in the treatment groups compared to the control group, IL-10 was associated with an increase, and TNF-α was associated with a decrease. The changes in inflammatory factors were more significant (p < 0.05) in the last group. So, our results indicate that AOSIS loaded with WJ-MSCs and MP could be used as an innovative tissue-engineered device to control inflammatory condition during burn wound healing.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, 51376563833, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, 51376563833, Tabriz, Iran.
| |
Collapse
|
12
|
Ground M, Waqanivavalagi S, Walker R, Milsom P, Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 2021; 133:102-113. [PMID: 34082103 DOI: 10.1016/j.actbio.2021.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Tissue engineered heart valves may one day offer an exciting alternative to traditional valve prostheses. Methods of construction vary, from decellularised animal tissue to synthetic hydrogels, but the goal is the same: the creation of a 'living valve' populated with autologous cells that may persist indefinitely upon implantation. Previous failed attempts in humans have highlighted the difficulty in predicting how a novel heart valve will perform in vivo. A significant hurdle in bringing these prostheses to market is understanding the immune reaction in the short and long term. With respect to innate immunity, the chronic remodelling of a tissue engineered implant by macrophages remains poorly understood. Also unclear are the mechanisms behind unknown antigens and their effect on the adaptive immune system. No silver bullet exists, rather researchers must draw upon a number of in vitro and in vivo models to fully elucidate the effect a host will exert on the graft. This review details the methods by which the immunogenicity of tissue engineered heart valves may be investigated and reveals areas that would benefit from more research. STATEMENT OF SIGNIFICANCE: Both academic and private institutions around the world are committed to the creation of a valve prosthesis that will perform safely upon implantation. To date, however, no truly non-immunogenic valves have emerged. This review highlights the importance of preclinical immunogenicity assessment, and summarizes the available techniques used in vitro and in vivo to elucidate the immune response. To the authors knowledge, this is the first review that details the immune testing regimen specific to a TEHV candidate.
Collapse
|
13
|
Decellularization Methods of Vagina and Cervix in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:153-160. [PMID: 34582021 DOI: 10.1007/978-3-030-82735-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The vagina is a fibromuscular elastic tubular tract that connects the cervix with the outer genitals and has an important function discharging uterine secretions, sexual intercourse and acts as the passage for the full-term fetus. Currently, a new field of investigation which aims to design tissues and organs similar to their native origin has been developed recently and was named regenerative medicine (tissue engineering and bioengineering). Malformations in cervix tissue represent a hard challenge for medicine. Experts in bioengineering have tried to reconstruct vaginas or cervix with the aim to achieve cervicovaginal disorders, most of them with congenital cause. However, only few research groups have launched themselves upon the decellularization. The aim of this chapter is investigating the decellularization methods for cervix and vaginal tissues.
Collapse
|
14
|
Fares AE, Gabr H, ShamsEldeen AM, Farghali HAM, Rizk MMSM, Mahmoud BE, Tammam ABA, Mahmoud AMA, Suliman AAM, Ayyad MAA, Ahmed SH, Hassan RM. Implanted subcutaneous versus intraperitoneal bioscaffold seeded with hepatocyte-like cells: functional evaluation. Stem Cell Res Ther 2021; 12:441. [PMID: 34362466 PMCID: PMC8344159 DOI: 10.1186/s13287-021-02531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Background and objectives The X-linked bleeding disorder, hemophilia A, is caused by defective production of factor VIII (FVIII). Hemophilic patients require regular FVIII infusions. Recombinant factor replacement poses the safest line of therapy. However, its main drawbacks are high expenses and the higher liability for formation of inhibitors. Recent studies confirmed the ability of bone marrow-derived stem cells to secrete FVIII. This study aims to generate bioscaffold from decellularized liver and subsequently seed it with trans-differentiated human stem cells into hepatic-like cells. This scaffold can then be implanted intraperitoneally or subcutaneously to provide FVIII.
Methods After generation of the bioscaffold, seeding of discoid scaffolds with trans-differentiated human hepatocyte-like cells was performed. Then, the generated organoid was implanted into peritoneal cavity or subcutaneous tissue of experimental rats. Results Serum human FVIII was significantly increased in rats subjected to subcutaneous implantation compared intraperitoneal implantation. Immunostaining for detecting Cytokeratin 19 and human anti-globulin confirmed the presence of mature human hepatocytes that were significantly increased in subcutaneous implanted scaffold compared to the intraperitoneal one. Conclusion Implantation of decellularized bioscaffold seeded with trans-differentiated stem cells in rats was successful to establish production of FVIII. Subcutaneous implantation showed higher FVIII levels than intraperitoneal implantation.
Collapse
Affiliation(s)
- Amal Elham Fares
- Histology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hala Gabr
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Haithem A M Farghali
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | | | | | | | | | | | - Sahar Hassan Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | | |
Collapse
|
15
|
Ahuja R, Kumari N, Srivastava A, Bhati P, Vashisth P, Yadav PK, Jacob T, Narang R, Bhatnagar N. Biocompatibility analysis of PLA based candidate materials for cardiovascular stents in a rat subcutaneous implant model. Acta Histochem 2020; 122:151615. [PMID: 33066837 DOI: 10.1016/j.acthis.2020.151615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
Modification of Polylactic acid (PLA), a biopolymer, is a strategy still to be fully explored for the next generation of bioresorbable vascular stent (BVS) biomaterials. With this focus, inclusions upto 5% of Polycaprolactone (PCL) and Magnesium in PLA were tested in the rat subcutaneous model and their cellular and tissue interactions characterized, specifically with respect to inflammatory response, angiogenesis and capsularization. The cytokines IL6, TNF Alpha and IL-1Beta were estimated in the peri-implant tissue, all of which showed a non-significant difference between the non-implanted animals and those containing PLA by 8 weeks, speaking to the benign nature of PLA as an implant biomaterial. Both modified materials, had increased macrophage counts and cytokine levels, except IL6 at 8 weeks. Vascularization only at 8 weeks in PLA PCL containing tissue was significantly higher than pure PLA, which may be more carefully controlled along with the material hydrophobicity for possible efforts towards therapeutic angiogenesis. Capsule thickness, measured by staining with both Hematoxylin & Eosin and Masson's Trichome did not show any differences between materials, including PLA.
Collapse
Affiliation(s)
- Ramya Ahuja
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Nisha Kumari
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Alok Srivastava
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Pooja Bhati
- Department of Mechanical & Automation Engineering, Indira Gandhi Delhi Technical University for Women, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - P K Yadav
- Central Animal Facility, All India Institute of Medical Sciences, Delhi, India
| | - Tony Jacob
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, Delhi, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
16
|
Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. METALS 2020. [DOI: 10.3390/met10070867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, the biomedical applicability and physical properties of magnesium-based metallic glass/polycaprolactone (PCL) composites are explored. The composites were fabricated via mechanical alloying and subsequent coextrusion. The coextrusion process was carried out at a temperature near to the supercooled liquid region of the metallic glass and the viscous region of the polymer. The structures, as well as thermal and mechanical properties of the obtained samples were characterized, and in vivo investigations were undertaken. The composite samples possess acceptable thermal and mechanical properties. Tensile tests indicate the ability of the composites to withstand more than 100% deformation. In vivo studies reveal that the composites are biologically compatible and could be promising for biomedical applications.
Collapse
|
17
|
Wang H, Ma Z, Liu J, Shi Q, Yin J. Reduction of thrombotic and inflammatory complications of polystyrene-block-polyisoprene-block-polystyrene (SIS) with one-step electrospinning. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:642-657. [PMID: 31860378 DOI: 10.1080/09205063.2019.1707943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polystyrene-block-polyisoprene-block-polystyrene (SIS) has been used as biomaterials due to its soft and stable properties under physiological conditions. However, the thrombotic and inflammatory complications caused by SIS restrain its application as blood-contacting implant. To overcome this problem, the hydrophilic core-shell structured SIS-based microfiber with antioxidant encapsulation is fabricated with one-step reactive electrospinning. We demonstrate that the phase separation of SIS and acylated Pluronic F127 (F127-DA) components and crosslinking during electrospinning renders the microfiber blood compatible and stable under physiological condition; the encapsulation of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) in microfiber and subsequent release of AA-2G detoxifies the excess reactive oxygen species (ROS). The microfibers are nontoxic to cells and promote the fast growth and proliferation of human umbilical vein endothelial cells (HUVECs) in the presence of ROS; the thrombotic and inflammatory complications are effectively reduced with implant evaluation in vivo. Therefore, our work paves a new way to improve the biocompatibility of SIS, making it a promising candidate for blood contact materials.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
18
|
Jana S, Franchi F, Lerman A. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering. ACTA ACUST UNITED AC 2019; 15:015004. [PMID: 31814596 DOI: 10.1088/1748-605x/ab52e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
19
|
Abstract
The generation of tissue engineered organs from autologous cells will allow replacement of diseased or absent organs without the need for immunosuppression. Common steps of tissue engineering include isolation of pluripotent or multipotent stem cells, preparation of synthetic or biologic scaffold, and implantation into a host to support the proliferation of engineered tissue. Some organs have been successfully transplanted in human patients; gastrointestinal tract tissues are nearing clinical introduction. The state of the science has progressed rapidly and providers and researchers alike must take appropriate steps to ensure strict adherence to ethical standards before introduction to human therapy.
Collapse
Affiliation(s)
- Daniel Levin
- Division of Pediatric Surgery, Department of Surgery, University of Virginia, 1300 Jefferson Park Avenue, PO BOX 800709, Charlottesville, VA 22908-0709, USA.
| |
Collapse
|
20
|
Noble C, Maxson EL, Lerman A, Young MD. Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. J Mech Behav Biomed Mater 2019; 102:103519. [PMID: 31879268 DOI: 10.1016/j.jmbbm.2019.103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient's own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants showed a mechanical response of similar magnitude but did not demonstrate the anisotropy present in native tissues. In the FE analysis, the model utilizing mechanical properties from samples explanted after 12 weeks showed the closest mechanical behavior to the native tissues. However, in diastole native tissues showed higher stress in the leaflet belly and lower strain at the commissures compared to 12 week explants, likely due to the anisotropy present in the native tissues. Thus, either further remodeling is required in situ in the aortic valve position or by in vitro preconditioning in an environment such as a bioreactor. Regardless, these results demonstrate the utility of FE analysis to optimize bioprinting process parameters for the most favorable in vivo mechanical performance.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva L Maxson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Mehrabi A, Baheiraei N, Adabi M, Amirkhani Z. Development of a Novel Electroactive Cardiac Patch Based on Carbon Nanofibers and Gelatin Encouraging Vascularization. Appl Biochem Biotechnol 2019; 190:931-948. [DOI: 10.1007/s12010-019-03135-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
|
22
|
Jain S, Fuoco T, Yassin MA, Mustafa K, Finne-Wistrand A. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules 2019; 21:388-396. [DOI: 10.1021/acs.biomac.9b01112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shubham Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Tiziana Fuoco
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Mohammed A. Yassin
- Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway, Årstadveien 19, 5009 Bergen, Norway
| | - Kamal Mustafa
- Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway, Årstadveien 19, 5009 Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| |
Collapse
|
23
|
Noble C, Choe J, Uthamaraj S, Deherrera M, Lerman A, Young M. In Silico Performance of a Recellularized Tissue Engineered Transcatheter Aortic Valve. J Biomech Eng 2019; 141:61004-6100412. [PMID: 30874717 DOI: 10.1115/1.4043209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 01/04/2023]
Abstract
Commercially available heart valves have many limitations, such as a lack of re-modeling, risk of calcification and thromboembolic problems. Many state-of-the-art tissue engineered heart valves rely on recellularization. Current in vitro testing is insufficient in characterizing a soon to be living valve. It is imperative to understand the performance of an in situ valve, but due to the complex in vivo environment this is difficult to accomplish. Finite element analysis has become a standard tool for modeling mechanical behavior of heart valves; yet, research to date has mostly focused on commercial valves. The purpose of this study has been to develop finite element models of a decellularized and recellularized tissue engineered heart valve. Mechanical properties from porcine aortic valves were utilized to develop finite element models, which were run through a full physiological cardiac cycle. Maximum principal stresses and strains from the leaflets and commissures were analyzed. The results of this study demonstrate that the explanted tissues had reduced mechanical strength compared to the implants but were similar to the native tissues. For the finite element models the explanted recellularized leaflets showed lower stress but increased compliance in the leaflet belly compared to native tissues and higher compliance than implant tissues. Histology demonstrated recellularization and remodeling although remodeled collagen had no clear directionality. In conclusion, we observed successful recellularization and remodeling of the tissue, however, the mechanical response indicates the further remodeling is required following implantation in the aortic/pulmonary position.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joshua Choe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Milton Deherrera
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa Young
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA 55905, phone: +1 (507)-266-5120
| |
Collapse
|
24
|
Khorramirouz R, Go JL, Noble C, Morse D, Lerman A, Young MD. In Vivo Response of Acellular Porcine Pericardial for Tissue Engineered Transcatheter Aortic Valves. Sci Rep 2019; 9:1094. [PMID: 30705386 PMCID: PMC6355869 DOI: 10.1038/s41598-018-37550-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022] Open
Abstract
Current heart valve prostheses have limitations that include durability, inability to grow in pediatric patients, and lifelong anticoagulation. Transcatheter aortic valve replacements are minimally invasive procedures, and therefore have emerged as an alternative to traditional valve prostheses. In this experiment, the regenerative capacity of potential tissue engineered transcatheter valve scaffolds (1) acellular porcine pericardium and (2) mesenchymal stem cell-seeded acellular porcine pericardium were compared to native porcine aortic valve cusps in a rat subcutaneous model for up to 8 weeks. Immunohistochemistry, extracellular matrix evaluation, and tissue biomechanics were evaluated on the explanted tissue. Acellular valve scaffolds expressed CD163, CD31, alpha smooth muscle actin, and vimentin at each time point indicating host cell recellularization; however, MSC-seeded tissue showed greater recellularization. Inflammatory cells were observed with CD3 biomarker in native porcine pericardial tissue throughout the study. No inflammation was observed in either acellular or MSC-seeded scaffolds. There was no mechanical advantage observed in MSC-seeded tissue; however after the first week post-explant, there was a decrease in mechanical properties in all groups (p < 0.05). MSC-seeded and acellular porcine pericardium expressed decreased inflammatory response and better host-cell recellularization compared to the native porcine aortic valve cusps.
Collapse
Affiliation(s)
- Reza Khorramirouz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason L Go
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Sutrisno L, Wang S, Li M, Luo Z, Wang C, Shen T, Chen P, Yang L, Hu Y, Cai K. Construction of three-dimensional net-like polyelectrolyte multilayered nanostructures onto titanium substrates for combined antibacterial and antioxidant applications. J Mater Chem B 2018; 6:5290-5302. [DOI: 10.1039/c8tb00192h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fabrication of nanofibers and a bacteria-triggered antibiotic-releasing coating to modify titanium substrates for antibacterial and antioxidant applications.
Collapse
|