1
|
Wang W, Liang S, Zou Y, Li Z, Wu Q, Wang L, Wu Z, Peng Z, You F. Expression of scp3 and dazl reveals the meiotic characteristics of the olive flounder Paralichthys olivaceus†. Biol Reprod 2023; 108:218-228. [PMID: 36308428 DOI: 10.1093/biolre/ioac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Olive flounder Paralichthys olivaceus is an important cultured marine fish. We found that the meiosis marker scp3 and its intrinsic regulator dazl were mainly expressed in the gonads. During the ovarian differentiation, scp3 signal was detected first in pre-meiotic oogonia at 60-mm total length (TL) and then in primary oocytes at 80- and 100-mm TL, with a sharp increase in scp3 expression level observed at 80- and 100-mm TL. Dazl signal was detected in primordial germ cells at 30-mm TL and oogonia at 60-mm TL, but no significant change of expression was observed. During the testicular differentiation period, scp3 and dazl expression remained at low levels, and scp3 signal was weakly detected in spermatogonia at 80-mm TL, whereas dazl signal was not found. During the ovarian developmental stages, the highest expression levels of scp3 and dazl were detected at stages I and II, respectively, and strong signals of scp3 and dazl were detected in primary oocytes and oocytes at phases I and II. In the testis, the high expression of scp3 and dazl was detected at stages II-IV and II-III, respectively. Scp3 signal was weakly observed in pre-meiotic spermatogonia at stages I and II and strongly detected in primary spermatocytes at stages III-V. Dazl was detected in the nuclei of spermatogonia and spermatids at stages II-IV. Furthermore, scp3 expression in the ovary could be promoted by 17α-ethynylestradiol and tamoxifen, whereas dazl expression could be downregulated by tamoxifen.
Collapse
Affiliation(s)
- Wenxiang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shaoshuai Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Yuxia Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Ze Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiaowan Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhihao Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhuangzhuang Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| |
Collapse
|
2
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
3
|
Characterization of Glutathione Peroxidase 4 in Rat Oocytes, Preimplantation Embryos, and Selected Maternal Tissues during Early Development and Implantation. Int J Mol Sci 2021; 22:ijms22105174. [PMID: 34068371 PMCID: PMC8153280 DOI: 10.3390/ijms22105174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to describe glutathione peroxidase 4 (GPx4) in rat oocytes, preimplantation embryos, and female genital organs. After copulation, Sprague Dawley female rats were euthanized with anesthetic on the first (D1), third (D3), and fifth days of pregnancy (D5). Ovaries, oviducts, and uterine horns were removed, and oocytes and preimplantation embryos were obtained. Immunohistochemical, immunofluorescent, and Western blot methods were employed. Using immunofluorescence, we detected GPx4 in both the oocytes and preimplantation embryos. Whereas in the oocytes, GPx4 was homogeneously diffused, in the blastomeres, granules were formed, and in the blastocysts, even clusters were present mainly around the cell nuclei. Employing immunohistochemistry, we detected GPx4 inside the ovary in the corpus luteum, stroma, follicles, and blood vessels. In the oviduct, the enzyme was present in the epithelium, stroma, blood vessels, and smooth muscles. In the uterus, GPx4 was found in the endometrium, myometrium, blood vessels, and stroma. Moreover, we observed GPx4 positive granules in the uterine gland epithelium on D1 and D3 and cytoplasm of fibroblasts forming in the decidua on D5. Western blot showed the highest GPx4 levels in the uterus and the lowest levels in the ovary. Our results show that the GPx4 is necessary as early as in the preimplantation development of a new individual because we detected it in an unfertilized oocyte in a blastocyst and not only after implantation, as was previously thought.
Collapse
|