1
|
Yin L, Wang X, Zhang D, Lin Z, Wang Y, Yu C, Jie H, Xu F, Yang C, Liu Y. The proteome and metabolome changes distinguish the effect of dietary energy levels on the development of ovary in chicken during sexual maturity. Poult Sci 2024; 103:104495. [PMID: 39531803 PMCID: PMC11602595 DOI: 10.1016/j.psj.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
To deeply understanding the impact of peripheral energy level on the development of ovaries during the sexual maturation of chicken, in this study, the ovaries and serum of sexually mature and immature chickens at the same age from different energy level groups were collected, and the proteome and metabolome were detected. The results of ovarian and serum metabolomics revealed that dietary energy levels affected the energy metabolism and fatty acid oxidation of ovary in chicken, including the up-regulated expression of dihydroacetone phosphate and α-linolenic acid in high energy level groups. The results of proteomics showed that peripheral energy levels affected the catecholamine biosynthesis and metabolism in ovary before sexual maturation. The integrating analysis revealed that increased energy flux may influence ovarian development by regulating cholesterol reserves and steroid hormone synthesis in the ovaries. In vitro, the cultivation of chicken primary granulosa cells showed that sterol carrier protein 2 played a role in fatty acid synthesis and metabolism but did not significantly affect progesterone synthesis. Overall, dietary energy levels may be involved in the development of the ovaries during sexual maturation by influencing energy metabolism, biosynthesis of unsaturated fatty acids and steroid hormone within the ovaries.
Collapse
Affiliation(s)
- Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hang Jie
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan 408435, Chongqing, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics 2023; 15:pharmaceutics15030869. [PMID: 36986730 PMCID: PMC10056871 DOI: 10.3390/pharmaceutics15030869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Consumption of edible oils is a significant part of the dietary pattern in the developed and developing world. Marine and vegetable oils are assumed to be part of a healthy food pattern, especially if one takes into account their potential role in protecting against inflammation, cardiovascular disease, and metabolic syndrome due to the presence of polyunsaturated fatty acids and minor bioactive compounds. Exploring the potential effect of edible fats and oils on health and chronic diseases is an emerging field worldwide. This study reviews the current knowledge of the in vitro, ex vivo, and in vivo effect of edible oils in contact with various cell types and aims to demonstrate which nutritional and bioactive components of a variety of edible oils present biocompatibility, antimicrobial properties, antitumor activity, anti-angiogenic activity, and antioxidant activity. Through this review, a wide variety of cell interactions with edible oils and their potential to counteract oxidative stress in pathological conditions are presented as well. Moreover, the gaps in current knowledge are also highlighted, and future perspectives on edible oils and their health benefits and potential to counteract a wide variety of diseases through possible molecular mechanisms are also discussed.
Collapse
|
3
|
Sun Y, Hao L, Han W, Luo J, Zheng J, Yuan D, Ye H, Li Q, Huang G, Han T, Yang Z. Intrafollicular fluid metabolic abnormalities in relation to ovarian hyperstimulation syndrome: Follicular fluid metabolomics via gas chromatography-mass spectrometry. Clin Chim Acta 2023; 538:189-202. [PMID: 36566958 DOI: 10.1016/j.cca.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ovarian hyperstimulation syndrome (OHSS) is the most serious iatrogenic complication of ovulation stimulation during assisted reproductive technology. The main objective of this study was to investigate intrafollicular fluid metabolic change profiles of OHSS in non-ovarian etiologic infertility women (CON) and polycystic ovarian syndrome patients (PCOS). METHODS 87 infertile women were divided into four subgroups: CON-Norm (CON with normal ovarian response), CON-OHSS (CON with OHSS), PCOS-Norm (PCOS with normal ovarian response), and PCOS-OHSS (PCOS with OHSS). The intrafollicular fluid metabolic profiles were analyzed with gas chromatography-mass spectrometry. The multivariable-adjusted conditional logistic regression was applied to assess the association of metabolites with OHSS risk. RESULTS We identified 17 and 3 metabolites that related to OHSS risk in CON and PCOS, respectively. 13 OHSS risk-related metabolites in CON were unsaturated fatty acids, 8 of which were also the significantly altered metabolites between all PCOS and CON-Norm. CONCLUSION Our study may shed light on the role of intrafollicular fluid metabolic abnormalities in the pathophysiology of OHSS. The findings suggested that there might be some metabolic heterogeneities underlying the development of OHSS in CON and PCOS women and indicated possible shared etiological factors in the development of PCOS and OHSS.
Collapse
Affiliation(s)
- Yixuan Sun
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R.China
| | - Lijuan Hao
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R.China
| | - Wei Han
- Center for Reproductive Medicine, Reproductive and Genetic Institute, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R.China
| | - Jing Luo
- Department of Pathology, Basic Medical College of Chongqing Medical University, 400016, P.R.China
| | - Jing Zheng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China
| | - Dong Yuan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China
| | - Hong Ye
- Center for Reproductive Medicine, Reproductive and Genetic Institute, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R.China
| | - Qinke Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China
| | - Guoning Huang
- Center for Reproductive Medicine, Reproductive and Genetic Institute, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R.China.
| | - Tingli Han
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China.
| | - Zhu Yang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China.
| |
Collapse
|
4
|
Development of Ready-to-Eat Organic Protein Snack Bars: Assessment of Selected Changes of Physicochemical Quality Parameters and Antioxidant Activity Changes during Storage. Foods 2022; 11:foods11223631. [PMID: 36429223 PMCID: PMC9689689 DOI: 10.3390/foods11223631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Novel organic high-protein bars (HPB) were developed and produced from organic ingredients such as prebiotic and pro-healthy additives or whey protein concentrate (WPC-80). The influence of temperature and time on the selected physicochemical parameters and antioxidant activity of three formulations of HPBs when stored (at 4 °C and 22 °C for 3 months) was investigated. The fresh products varied on the basis of available carbohydrates, crude lipids, amino acid profile, and fatty acid profile resulting from the used formulations. A total of 17 amino acids (AA), including 10 essential amino acids (EAA), were identified in HPBs. The concentrations of all essential amino acids determined by EAA scores (AAS), except Histidine (His), were higher than the FAO/WHO/UNU (2007) pattern; for the WPC-80 however, in the case of the developed HPB, the scores were lower (0.21-0.48). The first limiting amino acid in HPB was Val (Valine). The temperature and time of storage significantly affected the proximate chemical composition and an assessment of the products' antioxidant activity. The amino acid and fatty acid composition of stored products slightly changed. However, stored HPBs had a low content of trans fatty acids (TFAs). The optimal method of storage for the investigated bars was at the temperature of 4 °C for 3 months.
Collapse
|
5
|
Gumułka M, Hrabia A, Rozenboim I. Annual changes in cell proliferation and apoptosis and expression of connexin 43 in the testes of domestic seasonal breeding ganders. Theriogenology 2022; 186:27-39. [DOI: 10.1016/j.theriogenology.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
|
6
|
Effect of dietary supplementation with nettle or fenugreek on folliculogenesis and steroidogenesis in the rabbit ovary - An in vivo study. Theriogenology 2021; 173:1-11. [PMID: 34126406 DOI: 10.1016/j.theriogenology.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
The objective of the study was to investigate the effect of dietary supplementation with nettle or fenugreek on folliculogenesis and steroidogenesis in the juvenile rabbit ovary. To gain insight into the mechanism of action of these herbs, we examined follicle formation, ovarian cell proliferation and apoptosis, steroidogenic enzyme abundance and steroid concentrations in ovarian tissue and plasma. Animals were fed with control, 1% nettle- or 1% fenugreek-supplemented pellets from 5 to 12 weeks of age (n = 10 per each group), when animals were slaughtered for ovary and blood collection. The addition of nettle decreased the numbers of primordial (P = 0.015) and early antral (P = 0.02) follicles and increased the number of primary (P = 0.04) ones when compared with the control group. Following fenugreek supplementation, the numbers of primary (P = 0.008) and antral (P = 0.027) follicles were greater, while the number of early antral (P = 0.003) follicles was lower in comparison with the control group. Nettle revealed apoptotic activity through activation of caspases 9 (P = 0.047), 8 (P = 0.022) and 3 (P = 0.004), whereas fenugreek increased (P = 0.042) follicular cell proliferation marked by PCNA protein abundance. Furthermore, only fenugreek targeted steroidogenic enzymes, decreasing CYP17A1 (P = 0.043) and increasing CYP19A1 (P = 0.048) protein abundances that resulted in enhanced estradiol biosynthesis and its elevated (P = 0.006) plasma concentration. In conclusion, both herbs affected follicle development in the rabbit ovary in a stage specific manner. Additionally, fenugreek altered ovarian steroidogenesis in a way that might affect sexual maturation in rabbits.
Collapse
|