1
|
Wang X, Liu Z, Du Y, Hao S, Zhao B. Hsa_circ_0043603 promotes the progression of esophageal squamous cell carcinoma by sponging miR-1178-3p and regulating AADAC expression. Heliyon 2023; 9:e19807. [PMID: 37809396 PMCID: PMC10559168 DOI: 10.1016/j.heliyon.2023.e19807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This study aims to investigate the regulatory impact of hsa_circ_0043,603, a circular RNA, on the progression of esophageal squamous cell carcinoma (ESCC), which ranks as the sixth leading cause of global mortality. We evaluated the expression, origin, and localization of hsa_circ_0043,603 in ESCC tumors using qRT-PCR, bioinformatics, and FISH analysis. Functional studies were conducted by manipulating the hsa_circ_0043,603 expression in Eca109 cells through overexpression and silencing plasmids. Additionally, xenografts derived from circ_0043,603-overexpressing Eca109 cells enabled us to investigate tumor growth, proliferation, and apoptosis. Through Starbase analysis, we identified miR-1178-3p as a target of circ_0043,603, which was validated using RIP and luciferase assays. Furthermore, we predicted arylacetamide deacetylase (AADAC) as a target of miR-1178-3p and examined its expression in ESCC tissues using Western blot. Lastly, we performed AADAC silencing and overexpression in Eca109 cells to study their impact on cellular phenotypic features, apoptosis, and their interaction with miR-1178-3p mimics and inhibitors. The low expression of hsa_circ_0043,603 in ESCC tissue was associated with poor prognosis. Overexpression of hsa_circ_0043,603 inhibited ESCC growth, invasion, migration, and proliferation, while promoting apoptosis in vitro and suppressing tumor growth in vivo. hsa_circ_0043,603 achieved these effects by targeting the oncogenic miR-1178-3p. Furthermore, AADAC was identified as a target of miR-1178-3p, and its reduced expression was confirmed in ESCC tissues. Overexpression of AADAC in Eca109 cells resulted in suppressed cell growth, proliferation, migration, and invasion by regulating miR-1178-3p. hsa_circ_0043,603 acts as a sponge for miR-1178-3p, leading to the regulation of AADAC expression and inhibition of ESCC development. These results suggest the potential of hsa_circ_0043,603 as a therapeutic and diagnostic target for ESCC.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zhiguang Liu
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yalong Du
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Shuguang Hao
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bing Zhao
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| |
Collapse
|
2
|
Cao S, Ma Y, Yang H, Luo G, Cheng H, Jin X, Sun T. Long noncoding RNA HCG18 Promotes Extracellular Matrix Degradation of Nucleus Pulposus Cells in Intervertebral Disc Degeneration by Regulating the miR-4306/EPAS1 Axis. World Neurosurg 2023; 172:e52-e61. [PMID: 36460200 DOI: 10.1016/j.wneu.2022.11.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Intervertebral disc degeneration is a very common disease worldwide and the leading cause of low back pain. Long noncoding RNAs are novel players in intervertebral disc degeneration and have multiple functions. This study explored the role of long noncoding RNA HCG18 in regulating extracellular matrix (ECM) degradation in nucleus pulposus cells (NPCs) during intervertebral disc degeneration. METHODS NPCs were subjected to interleukin-1β to induce a degenerative model of NPCs. Cell viability was assessed using Cell Counting Kit-8 assay. Messenger RNA and protein expressions were examined by real-time quantitative polymerase chain reaction and Western blot. The location of HCG18 was determined by nucleocytoplasmic separation assay. The binding relationships between HCG18, MIR4306, and EPAS1 were verified by dual luciferase reporter gene assay and/or RNA immunoprecipitation assay. RESULTS HCG18 was highly expressed in interleukin-1β-induced degenerated NPCs, which was associated with reduced collagen II and aggrecan expression and increased MMP-13 and ADAMTS-4 expression. HCG18 knockdown could remarkably inhibit ECM degradation in IL-1β-induced degenerated NPCs, while HCG18 overexpression had the opposite effect. Our molecular study further revealed that HCG18 could sponge MIR4306, and HCG18 knockdown could suppress ECM degradation in degenerated NPCs by elevating MIR4306 expression. In addition, EPAS1 was identified as the direct target of MIR4306. As expected, MIR4306 overexpression inhibited ECM degradation in degenerated NPCs by downregulating EPAS1. CONCLUSIONS HCG18 promoted ECM degradation in degenerated NPCs via regulation of the MIR4306/EPAS1 axis.
Collapse
Affiliation(s)
- Sheng Cao
- Tianjin Medical University, Tianjin, China; Department of Spinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yuan Ma
- Tianjin Medical University, Tianjin, China; Department of Orthopedic, Nanyang Central Hospital, Nanyang, Henan, China
| | | | - Gan Luo
- Tianjin Medical University, Tianjin, China
| | | | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China
| | - Tianwei Sun
- Tianjin Medical University, Tianjin, China; Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
3
|
Zhang D, Pan G, Cheng N, Sun L, Zhou X, Li C, Zhao J. JUND facilitates proliferation and angiogenesis of esophageal squamous cell carcinoma cell via MAPRE2 up-regulation. Tissue Cell 2023; 81:102010. [PMID: 36608637 DOI: 10.1016/j.tice.2022.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Esophageal squamous cell carcinoma (ESCC) is a globally aggressive malignant tumor. This study aimed to investigate the mechanism of JUND in ESCC development via MAPRE2. METHODS ESCC cells (KYSE-450 and ECA109) were transfected with small interfering RNA (si)-JUND, si-MAPRE2, si-JUND, or pcDNA3.1-MAPRE2. JUND and MAPRE2 expression in ESCC cells was detected with quantitative real-time polymerase chain reaction and western blot. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to determine ESCC cell proliferation. Dual-luciferase reporter gene and chromatin immunoprecipitation assays were performed to assess binding between JUND and MAPRE2. Human umbilical vein endothelial cells (HUVECs) were co-cultured with ESCC cell supernatants. Angiogenesis was assessed with an in vitro angiogenesis assay. Western blot was conducted to evaluate the expression of angiogenic proteins [vascular endothelial growth factor A (VEGFA), matrix metallopeptidase 9 (MMP-9), and angiopoietin-2 (ang2)]. RESULTS The levels of expression of JUND and MAPRE2 were high in ESCC cells. Mechanistically, JUND bound to MAPRE2 promoter and increased MAPRE2 transcription. Downregulation of JUND or MAPRE2 inhibited KYSE-450 and ECA109 cell proliferation and reduced the levels of expression of VEGFA, MMP-9, and ang2 and tube formation in HUVECs co-cultured with ESCC cell supernatants. MAPRE2 upregulation counteracted the inhibitory effects of JUND silencing on cell proliferative and angiogenic capabilities in ESCC. CONCLUSIONS JUND promoted MAPRE2 transcription, thereby facilitating cell proliferative and angiogenic abilities in ESCC.
Collapse
Affiliation(s)
- Deming Zhang
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Gaofeng Pan
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Nitao Cheng
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Linao Sun
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xuefeng Zhou
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Changsheng Li
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Jinping Zhao
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
4
|
Liu J, Peng X, Yang Y, Zhang Y, Han M, Shi X, Zheng J, Li T, Chen J, Lv W, Liu Y, Qi Y, Zhang L, Liu Q. The value of hsa_circ_0058514 in plasma extracellular vesicles for breast cancer. Front Oncol 2022; 12:995196. [PMID: 36387225 PMCID: PMC9663982 DOI: 10.3389/fonc.2022.995196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to investigate the diagnostic value of hsa_circ_0058514 in plasma extracellular vesicles (EVs) in BC patients and its predictive value for neoadjuvant chemotherapy. The expression of hsa_circ_0058514 in a large sample of BC plasma and healthy subjects' plasma was detected by qPCR, and the ROC curve was drawn to verify its diagnostic value as a plasma tumor marker. Furthermore, the association between the expression of hsa_circ_0058514 and clinicopathological characteristics before and after treatment was detected in the plasma of 40 pairs of BC patients undergoing neoadjuvant therapy. The expression level of hsa_circ_0058514 in the plasma of BC patients was significantly higher than that of healthy subjects. The ROC curve showed that plasma hsa_circ_0058514 ROC in differentiating non-metastatic BC and healthy people had better diagnostic efficiency than conventional tumor markers CA153, CA125, and CEA. In patients with neoadjuvant therapy, the decrease in plasma hsa_circ_0058514 value before and after treatment correlated with pathological MP grade (r = 0.444, p = 0.004) and imaging tumor regression value (r = 0.43, p = 0.005) positive correlation. The detection of hsa_circ_0058514 in both extracellular vesicles of BC cell culture medium and human plasma was demonstrated. Hsa_circ_0058514 is detected in the plasma from BC cells secreted in the form of vesicles. Hsa_circ_0058514 can be used as an early plasma biological indicator for the diagnosis of BC in clinical applications, with a higher risk of recurrence and metastasis, and as a predictor of the effect of neoadjuvant therapy to guide the clinical use of neoadjuvant therapy.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xinyu Peng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yang Yang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yao Zhang
- Department of Plastic Surgery, Hangzhou Xiaoshan Yaoran Medical Cosmetology Clinic Co. Ltd, Hangzhou, China
| | - Meng Han
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaohui Shi
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zheng
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tong Li
- Graduate school of Chengde Medical University, Chengde, China
| | - Jinxia Chen
- Clinical Laboratory of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weihua Lv
- Clinical Laboratory of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Yunjiang Liu, ; Yixin Qi,
| | - Yixin Qi
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Yunjiang Liu, ; Yixin Qi,
| | - Lei Zhang
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Qi Liu
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
He M, Wang J, Yin Y, You M, He M. Effects of micro ribonucleic acid-451 silencing on biological behaviors of esophageal cancer cells. Minerva Gastroenterol (Torino) 2022; 68:339-341. [PMID: 35343665 DOI: 10.23736/s2724-5985.22.03158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muqun He
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jianfeng Wang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Yin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Minjing You
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Muqing He
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China -
| |
Collapse
|
6
|
Ju C, He J, Wang C, Sheng J, Jia J, Du D, Li H, Zhou M, He F. Current advances and future perspectives on the functional roles and clinical implications of circular RNAs in esophageal squamous cell carcinoma: more influential than expected. Biomark Res 2022; 10:41. [PMID: 35672804 PMCID: PMC9171998 DOI: 10.1186/s40364-022-00388-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive gastrointestinal cancers with high incidence and mortality. Therefore, it is necessary to identify novel sensitive and specific biomarkers for ESCC detection and treatment. Circular RNAs (circRNAs) are a type of noncoding RNAs featured by their covalently closed circular structure. This special structure makes circRNAs more stable in mammalian cells, coupled with their great abundance and tissue specificity, suggesting circRNAs may present enormous potential to be explored as valuable prognostic and diagnostic biomarkers for tumor. Mounting studies verified the critical roles of circRNAs in regulating ESCC cells malignant behaviors. Here, we summarized the current progresses in a handful of aberrantly expressed circRNAs, and elucidated their biological function and clinical significance in ESCC, and introduced a series of databases for circRNA research. With the improved advancement in high-throughput sequencing and bioinformatics technique, new frontiers of circRNAs will pave the path for the development of precision treatment in ESCC.
Collapse
Affiliation(s)
- Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Li N, Wu J, Hu B, Lu H, Gao J, Zhu L, Zheng D. Upregulation of hsa_circ_0000977 participates in esophageal squamous cancer progression by sponging miR-874-3p. J Clin Lab Anal 2022; 36:e24458. [PMID: 35476874 PMCID: PMC9169171 DOI: 10.1002/jcla.24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common clinical malignancies of the digestive system, characterized by high mortality but not evident early symptoms. Molecular markers for diagnostic and outcome prediction are urgently needed. Circular RNAs might play essential roles in the progression of ESCC. METHODS Hsa_circ_0000977 was identified using circRNA microarrays and qRT-PCR. The diagnostic value of hsa_circ_0000977 was calculated. We also examined in vitro cell functions in ECA109 and TE12 ESCC cells to determine the effect of hsa_circ_0000977. A dual-luciferase reporter vector validated the binding of hsa_circ_0000977 to miR-874-3p. RESULTS The top 10 significantly upregulated circRNAs from microarray assays were hsa_circ_0000977, hsa_circ_0006220, hsa_circ_0043278, hsa_circ_0000691, hsa_circ_0000288, hsa_circ_0000367, hsa_circ_0021647, hsa_circ_0006440, hsa_circRNA_405571 and hsa_circRNA_100790, while the top 10 significantly downregulated circRNAs were hsa_circ_0008389, hsa_circ_0089763, hsa_circ_0089762, hsa_circ_0000102, hsa_circ_0001714, hsa_circ_0089761, hsa_circ_0007326, hsa_circ_0001549, hsa_circ_0005133 and hsa_circRNA_405965. Hsa_circ_0000977 was significantly upregulated in ESCC (p < 0.01) and had diagnostic value in ESCC. The hsa_circ_0000977 expression level was related to the pT stage and numbers of lymph nodes in ESCC patients. Elevated hsa_circ_0000977 promoted cell proliferation, migration and inhibited apoptosis in ESCC cells. Hsa_circ_0000977 might function as a micro-RNA sponge to competitively bind miR-874-3p. CONCLUSION Disordered hsa_circ_0000977 expression can promote carcinogenesis in ESCC and might serve as a diagnostic biomarker to evaluate the occurrence and development of esophageal cancer.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic SurgeryLihuili Hospital Affiliated to Ningbo UniversityNingboChina
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jiacheng Wu
- College of Medical ScienceNingbo UniversityNingboChina
| | - Bingchuan Hu
- Department of Cardiothoracic SurgeryLihuili Hospital Affiliated to Ningbo UniversityNingboChina
| | - Hongna Lu
- Department of Cardiothoracic SurgeryLihuili Hospital Affiliated to Ningbo UniversityNingboChina
| | - Jianqing Gao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Linwen Zhu
- Department of Cardiothoracic SurgeryLihuili Hospital Affiliated to Ningbo UniversityNingboChina
| | - Dawei Zheng
- Department of Cardiothoracic SurgeryLihuili Hospital Affiliated to Ningbo UniversityNingboChina
| |
Collapse
|
8
|
Dexmedetomidine disrupts esophagus cancer tumorigenesis by modulating circ_0003340/miR-198/HMGA2 axis. Anticancer Drugs 2022; 33:448-458. [PMID: 35324528 DOI: 10.1097/cad.0000000000001284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
More and more studies have focused on the regulatory role of circular RNAs (circRNAs) in various cancers. However, it is not clear how dexmedetomidine (DEX) affects esophagus cancer progression by affecting the expression of circRNAs. This study aimed to investigate the role of DEX in esophagus cancer and its underlying mechanism. Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assays were conducted to evaluate cell proliferation. Flow cytometry analysis and transwell assay were performed for cell apoptosis and invasion. The protein levels of cleaved caspase-3, matrix metallopeptidase 9, and high mobility group AT-hook 2 (HMGA2) were assessed by western blot assay. The expression levels of circ_0003340 and microRNA-198 (miR-198) were determined by quantitative real-time PCR. Dual-luciferase reporter assay was performed to verify the interaction between miR-198 and circ_0003340 or HMGA2. Murine xenograft model was established to investigate the role of circ_0003340 and DEX in vivo. DEX exerted antitumor effects in esophagus cancer cells. DEX hindered proliferation and invasion while inducing apoptosis of esophagus cancer cells, which was abolished by circ_0003340 elevation, HMGA2 overexpression, or miR-198 silencing. miR-198 directly interacted with circ_0003340 and HMGA2 in esophagus cancer cells. Moreover, knockdown of circ_0003340 could improve the anticancer role of DEX in vivo. DEX constrained cell carcinogenesis by regulating circ_0003340/miR-198/HMGA2 axis in esophagus cancer, providing an effective clinical implication for preventing the development of the esophagus cancer by the DEX.
Collapse
|