1
|
Zhang C, Wang Y, Guo M, Kong Y, Fan X, Sun S, Du C, Gong H. Antifungal mechanisms of phenyllactic acid against Mucor racemosus: Insights from spore growth suppression, and proteomic analysis. Food Chem 2025; 475:143309. [PMID: 39954636 DOI: 10.1016/j.foodchem.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Mucor, a common mold, is a major cause of post-harvest spoilage in sweet cherries, leading to significant economic losses. While previous studies have demonstrated that phenyllactic acid (PLA) exhibits potent antifungal activity against Mucor, its underlying mechanism remains unclear. Here, we probed into the efficacy of PLA in inhibiting Mucor spore growth and explored its mechanisms of action. PLA treatment suppressed Mucor spore growth in a dose-dependent manner, with a minimum inhibitory concentration of 12 mmol/L. Morphological analysis revealed that PLA caused nuclear chromatin condensation, DNA fragmentation, and severe ultrastructural damage, including cell swelling, vacuolization, and separation of the cell wall from the membrane. Additionally, results of flow cytometry showed that PLA induced phosphatidylserine externalization, mitochondrial membrane potential depolarization, and intracellular reactive oxygen species accumulation in Mucor spore cells. Tandem Mass Tag (TMT)-based proteomic analysis identified 1248 differentially expressed proteins (DEPs; 616 upregulated and 632 downregulated) in Mucor spores treated with 24 mmol/L PLA, compared to the untreated control (p < 0.05). Bioinformatics analysis revealed that these DEPs were primarily involved in oxidative phosphorylation, glycolysis, the citrate cycle, and the biosynthesis and metabolism of carbon and amino acids. Overall, these findings elucidate the antifungal mechanisms of PLA against Mucor spores and provide valuable insights into the potential application of PLA in food preservation.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Yunfan Wang
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Mingmei Guo
- Mudan District Mudan Street Sub-district Office, Heze, Shandong Province 274000, PR China
| | - Yanhui Kong
- Yantai Landscape Construction and Maintenance Center, Yantai, Shandong Province 264000, PR China
| | - Xinguang Fan
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China.
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China.
| |
Collapse
|
2
|
Echeverria CV, Leathers TA, Rogers CD. Comparative analysis of fixation techniques for signal detection in avian embryos. Dev Biol 2025; 517:13-23. [PMID: 39245159 PMCID: PMC11631674 DOI: 10.1016/j.ydbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The choice of fixation method significantly impacts tissue morphology and visualization of gene expression and proteins after in situ hybridization chain reaction (HCR) or immunohistochemistry (IHC), respectively. In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation techniques prior to HCR and IHC on chicken embryos. Our findings underscore the importance of optimizing fixation methods for accurate visualization and subsequent interpretation of HCR and IHC results, with implications for probe and antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei and neural tubes compared to PFA fixation. Additionally, TCA fixation altered the subcellular fluorescence signal intensity of various proteins, including transcription factors, cytoskeletal proteins, and cadherins. Notably, TCA fixation revealed protein signals in tissues that may be inaccessible with PFA fixation. In contrast, TCA fixation proved ineffective for mRNA visualization. These results highlight the need for optimization of fixation protocols depending on the target and model system, emphasizing the importance of methodological considerations in biological analyses.
Collapse
Affiliation(s)
- Camilo V Echeverria
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Echeverria CV, Leathers TA, Rogers CD. Effectiveness of fixation methods for wholemount immunohistochemistry across cellular compartments in chick embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586361. [PMID: 38585750 PMCID: PMC10996528 DOI: 10.1101/2024.03.23.586361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The choice of fixation method significantly impacts tissue morphology and protein visualization after immunohistochemistry (IHC). In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation prior to IHC on chicken embryos. Our findings underscore the importance of validating fixation methods for accurate interpretation of IHC results, with implications for antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei compared to PFA fixation. Additionally, TCA fixation altered the appearance of subcellular localization and fluorescence intensity of various proteins, including transcription factors and cytoskeletal proteins. Notably, TCA fixation revealed protein localization domains that may be inaccessible with PFA fixation. These results highlight the need for optimization of fixation protocols depending on the target epitope and model system, emphasizing the importance of methodological considerations in biological analyses.
Collapse
Affiliation(s)
- Camilo V Echeverria
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Mirzaei M, Eshaghi-Gorji R, Fani F, Karimpour Malekshah A, Talebpour Amiri F. Comparative evaluation of the effect of three types of fixatives (formalin, Bouin and Carnoy) on histomorphological features of various viscera. Anat Histol Embryol 2023; 52:882-889. [PMID: 37392057 DOI: 10.1111/ahe.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Tissue shrinkage is one of the problems in preparing tissue sections. This study compares the use of 10% formalin, Bouin and Carnoy as fixatives on several mouse tissues to determine histomorphological features. In this experimental study, liver, kidney, heart, lung, testicle, spleen, brain and cartilage tissues were isolated from five BALB/c mice. Then, they were fixed with three types of fixatives. After dehydrating, clarifying and embedding, all samples were stained with haematoxylin and eosin. Then, the tissue structure of the viscera was evaluated qualitatively. The results showed that each fixative is more suitable for evaluating a specific part of the tissue. However, relative shrinkage appeared in the tissue sections fixed with 10% Formalin, (1) in the heart as spaces between muscle fibre bundles, (2) in the liver as the dilation of the liver sinusoidal spaces, (3) in the kidney tissue as the expansion of the lumens of the convoluted proximal and distal tubules, (4) in the spleen as open spaces inside the red and white pulps and (5) in the brain as an increase in the space between the cells of the granular and pyramidal cell layers of the cortex. In tissues that were soft and fragile, such as testis, liver and brain, Bouin's fixative was more suitable. Carnoy's fixative was more suitable for the spleen and kidney tissue. Based on the study results, formalin and Bouin were more suitable for heart and cartilage tissue. Considering that in the histopathological evaluation both the cytoplasm and the nucleus are evaluated, it is suggested to choose the fixative suitable for the type of tissue.
Collapse
Affiliation(s)
- Mansoureh Mirzaei
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Fani
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Liu W, Gong T, Xu Y. The co-expression of steroidogenic enzymes with T1R3 during testicular development in the Congjiang Xiang pig. Anim Reprod Sci 2023; 251:107216. [PMID: 37011421 DOI: 10.1016/j.anireprosci.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450c17 (CYP17A1) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3β-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cβ2, PLCβ2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3β-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCβ2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCβ2, may associate with this process.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
6
|
Sun W, Tian F, Pan H, Chang X, Xia M, Hu J, Wang Y, Li R, Li W, Yang M, Zhou Z. Flurochloridone induced abnormal spermatogenesis by damaging testicular Sertoli cells in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114163. [PMID: 36240522 DOI: 10.1016/j.ecoenv.2022.114163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.
Collapse
Affiliation(s)
- Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China; Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|