1
|
Liang X, He Q, Jiao Y, Yang H, Huang W, Liu K, Lin H, Xu L, Hou Y, Ding Y, Zhang Y, Huang H, Zhao H. Identification of rare variants in PTCH2 associated with non-syndromic orofacial clefts. Gene 2024; 907:148280. [PMID: 38360123 DOI: 10.1016/j.gene.2024.148280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Orofacial clefts (OFCs) represent the most prevalent congenital craniofacial anomalies, significantly impacting patients' appearance, oral function, and psychological well-being. Among these, non-syndromic OFCs (NSOFCs) are the most predominant type, with the etiology attributed to a combination of genetic and environmental factors. Rare variants of key genes involved in craniofacial development-related signaling pathway are crucial in the occurrence of NSOFCs, and our recent studies have identified PTCH1, a receptor-coding gene in the Hedgehog signaling pathway, as a causative gene for NSOFCs. However, the role of PTCH2, the paralog of PTCH1, in pathogenesis of NSOFCs remains unclear. Here, we perform whole-exome sequencing to explore the genetic basis of 144 sporadic NSOFC patients. We identify five heterozygous variants of PTCH2 in four patients: p.L104P, p.A131G, p.R557H, p.I927S, and p.V978D, with the latter two co-occurring in a single patient. These variants, all proven to be rare through multiple genomic databases, with p.I927S and p.V978D being novel variants and previously unreported. Sequence alignment suggests that these affected amino acids are evolutionarily conserved across vertebrates. Utilizing predictive structural modeling tools such as AlphaFold and SWISS-MODEL, we propose that these variants may disrupt the protein's structure and function. In summary, our findings suggest that PTCH2 may be a novel candidate gene predicted to be associated with NSOFCs, thereby broadening the spectrum of causative genes implicated in the craniofacial anomalies.
Collapse
Affiliation(s)
- Xuqin Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuhua Jiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hui Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenbin Huang
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, PR China
| | - Kangying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hongmei Lin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhang
- Department of Stomatology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, PR China.
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
2
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
3
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|