1
|
Hock HS, Schöner G. The stabilization of visibility for sequentially presented, low-contrast objects: Experiments and neural field model. J Vis 2023; 23:12. [PMID: 37585184 PMCID: PMC10434716 DOI: 10.1167/jov.23.8.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
In any environment, events transpire in temporal sequences. The general principle governing such sequences is that each instance of the event is influenced by its predecessors. It is shown here that this principle is true for a fundamental aspect of visual perception: visibility. A series of nine psychophysical experiments and associated neural dynamic simulations provide evidence that two non-stimulus factors, self-excitation and short-term memory, stabilize the visibility of a simple low-contrast object (a line segment) as it moves over a sequence of unpredictable locations. Stabilization was indicated by the very low probability of visible-to-invisible switches, and dependence on preceding visibility states was indicated by hysteresis as the contrast of the object was gradually decreased or increased. The contribution of self-excitation to stabilization was indicated by increased visible-to-invisible switching (decreased hysteresis) following adaptation of the visibility state, and the contribution of memory to stabilization was indicated by visibility "bridging" long blank intervals separating each relocation of the object. Because of the unpredictability of the relocations of the object, its visibility at one location pre-shapes visibility at its next location via persisting subthreshold activation of detectors surrounding the low-contrast object. All effects were modeled, including contributions from adaptation and recurrent inhibition, with a single set of parameter values.
Collapse
Affiliation(s)
- Howard S Hock
- Department of Psychology and the Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Gregor Schöner
- Institute for Neural Computation, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
2
|
Rodríguez-Martínez GA, Castillo-Parra H. Bistable perception: neural bases and usefulness in psychological research. Int J Psychol Res (Medellin) 2018; 11:63-76. [PMID: 32612780 PMCID: PMC7110285 DOI: 10.21500/20112084.3375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bistable images have the possibility of being perceived in two different ways. Due to their physical characteristics, these visual stimuli allow two different perceptions, associated with top-down and bottom-up modulating processes. Based on an extensive literature review, the present article aims to gather the conceptual models and the foundations of perceptual bistability. This theoretical article compiles not only notions that are intertwined with the understanding of this perceptual phenomenon, but also the diverse classification and uses of bistable images in psychological research, along with a detailed explanation of the neural correlates that are involved in perceptual reversibility. We conclude that the use of bistable images as a paradigmatic resource in psychological research might be extensive. In addition, due to their characteristics, visual bistable stimuli have the potential to be implemented as a resource in experimental tasks that seek to understand diverse concerns linked essentially to attention, sensory, perceptual and memory processes.
Collapse
Affiliation(s)
- Guillermo Andrés Rodríguez-Martínez
- Escuela de Publicidad - Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia. Universidad de Bogotá Jorge Tadeo Lozano Universidad de Bogotá Jorge Tadeo Lozano Bogotá Colombia.,Facultad de Psicología - Universidad de San Buenaventura de Medellín, Colombia. Universidad de San Buenaventura Universidad de San Buenaventura de Medellín Colombia
| | - Henry Castillo-Parra
- Facultad de Psicología - Universidad de San Buenaventura de Medellín, Colombia. Universidad de San Buenaventura Universidad de San Buenaventura de Medellín Colombia
| |
Collapse
|
3
|
Kim S, Frank TD. Correlations Between Hysteretic Categorical and Continuous Judgments of Perceptual Stimuli Supporting a Unified Dynamical Systems Approach to Perception. Perception 2017; 47:44-66. [PMID: 28945152 DOI: 10.1177/0301006617731047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report from two variants of a figure-ground experiment that is known in the literature to involve a bistable perceptual domain. The first variant was conducted as a two-alternative forced-choice experiment and in doing so tested participants on a categorical measurement scale. The second variant involved a Likert scale measure that was considered to represent a continuous measurement scale. The two variants were conducted as a single within-subjects experiment. Measures of bistability operationalized in terms of hysteresis size scores showed significant positive correlations across the two response conditions. The experimental findings are consistent with a dualistic interpretation of self-organizing perceptual systems when they are described on a macrolevel by means of so-called amplitude equations. This is explicitly demonstrated for a Lotka-Volterra-Haken amplitude equation model of task-related brain activity. As a by-product, the proposed dynamical systems perspective also sheds new light on the anchoring problem of producing numerical, continuous judgments.
Collapse
Affiliation(s)
- S Kim
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT, USA
| | - T D Frank
- Center for the Ecological Study of Perception and Action, 7712 University of Connecticut , Storrs, CT, USA; Department of Physics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Mascheretti S, Gori S, Trezzi V, Ruffino M, Facoetti A, Marino C. Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. GENES BRAIN AND BEHAVIOR 2017; 17:70-81. [PMID: 28834383 DOI: 10.1111/gbb.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well-established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co-segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co-segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.
Collapse
Affiliation(s)
- S. Mascheretti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - S. Gori
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Department of Human and Social Sciences; University of Bergamo; Bergamo Italy
| | - V. Trezzi
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - M. Ruffino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - A. Facoetti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Developmental Cognitive Neuroscience Lab, Department of General Psychology; University of Padua; Padua Italy
| | - C. Marino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Centre for Addiction and Mental Health; University of Toronto; ON Canada
| |
Collapse
|
5
|
|
6
|
Gori S, Molteni M, Facoetti A. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder. Front Hum Neurosci 2016; 10:175. [PMID: 27199702 PMCID: PMC4842763 DOI: 10.3389/fnhum.2016.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools - based on visual illusions - to identify an early risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of BergamoBergamo, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of PadovaPadua, Italy
| |
Collapse
|
7
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
8
|
Gori S, Mascheretti S, Giora E, Ronconi L, Ruffino M, Quadrelli E, Facoetti A, Marino C. The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. Cereb Cortex 2014; 25:1685-95. [PMID: 25270309 DOI: 10.1093/cercor/bhu234] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simone Gori
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Enrico Giora
- Faculty of Psychology, "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Luca Ronconi
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Milena Ruffino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Ermanno Quadrelli
- Department of Psychology, University of Milan-Bicocca, 20126 Milan, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3 Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
9
|
Gori S, Cecchini P, Bigoni A, Molteni M, Facoetti A. Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Front Hum Neurosci 2014; 8:460. [PMID: 25009484 PMCID: PMC4068287 DOI: 10.3389/fnhum.2014.00460] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Although developmental dyslexia (DD) is frequently associate with a phonological deficit, the underlying neurobiological cause remains undetermined. Recently, a new model, called "temporal sampling framework" (TSF), provided an innovative prospect in the DD study. TSF suggests that deficits in syllabic perception at a specific temporal frequencies are the critical basis for the poor reading performance in DD. This approach was presented as a possible neurobiological substrate of the phonological deficit of DD but the TSF can also easily be applied to the visual modality deficits. The deficit in the magnocellular-dorsal (M-D) pathway - often found in individuals with DD - fits well with a temporal oscillatory deficit specifically related to this visual pathway. This study investigated the visual M-D and parvocellular-ventral (P-V) pathways in dyslexic and in chronological age and IQ-matched normally reading children by measuring temporal (frequency doubling illusion) and static stimuli sensitivity, respectively. A specific deficit in M-D temporal oscillation was found. Importantly, the M-D deficit was selectively shown in poor phonological decoders. M-D deficit appears to be frequent because 75% of poor pseudo-word readers were at least 1 SD below the mean of the controls. Finally, a replication study by using a new group of poor phonological decoders and reading level controls suggested a crucial role of M-D deficit in DD. These results showed that a M-D deficit might impair the sub-lexical mechanisms that are critical for reading development. The possible link between these findings and TSF is discussed.
Collapse
Affiliation(s)
- Simone Gori
- Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy ; Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| | - Paolo Cecchini
- Ophthalmological Unit, Istituto Scientifico "E. Medea" di San Vito al Tagliamento Pordenone, Italy
| | - Anna Bigoni
- Ophthalmological Unit, Istituto Scientifico "E. Medea" di San Vito al Tagliamento Pordenone, Italy
| | - Massimo Molteni
- Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy ; Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| |
Collapse
|
10
|
Huang LT, Wong AMK, Chen CPC, Chang WH, Cheng JW, Lin YR, Pei YC. Global motion percept mediated through integration of barber poles presented in bilateral visual hemifields. PLoS One 2013; 8:e74032. [PMID: 24009764 PMCID: PMC3756956 DOI: 10.1371/journal.pone.0074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
How is motion information that has been obtained through multiple viewing apertures integrated to form a global motion percept? We investigated the mechanisms of motion integration across apertures in two hemifields by presenting gratings through two rectangles (that form the dual barber poles) and recording the perceived direction of motion by human observers. To this end, we presented dual barber poles in conditions with various inter-component distances between the apertures and evaluated the degree to which the hemifield information was integrated by measuring the magnitude of the perceived barber pole illusion. Surprisingly, when the inter-component distance between the two apertures was short, the perceived direction of motion of the dual barber poles was similar to that of a single barber pole formed by the concatenation of the two component barber poles, indicating motion integration is achieved through a simple concatenation mechanism. We then presented dual barber poles in which the motion and contour properties of the two component barber poles differed to characterize the constraints underlying cross-hemifield integration. We found that integration is achieved only when phase, speed, wavelength, temporal frequency, and duty cycle are identical in the two barber poles, but can remain robust when the contrast of the two component barber poles differs substantially. We concluded that a motion stimulus presented in bilateral hemifields tends to be integrated to yield a global percept with a substantial tolerance for spatial distance and contrast difference.
Collapse
Affiliation(s)
- Li-Ting Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice M. K. Wong
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Carl P. C. Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Han Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ju-Wen Cheng
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Ru Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Decreased coherent motion discrimination in autism spectrum disorder: the role of attentional zoom-out deficit. PLoS One 2012; 7:e49019. [PMID: 23139831 PMCID: PMC3490913 DOI: 10.1371/journal.pone.0049019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) has been associated with decreased coherent dot motion (CDM) performance, a task that measures magnocellular sensitivity as well as fronto-parietal attentional integration processing. In order to clarify the role of spatial attention in CDM tasks, we measured the perception of coherently moving dots displayed in the central or peripheral visual field in ASD and typically developing children. A dorsal-stream deficit in children with ASD should predict a generally poorer performance in both conditions. In our study, however, we show that in children with ASD, CDM perception was selectively impaired in the central condition. In addition, in the ASD group, CDM efficiency was correlated to the ability to zoom out the attentional focus. Importantly, autism symptoms severity was related to both the CDM and attentional zooming-out impairment. These findings suggest that a dysfunction in the attentional network might help to explain decreased CDM discrimination as well as the “core” social cognition deficits of ASD.
Collapse
|
12
|
Detection vs. grouping thresholds for elements differing in spacing, size and luminance. An alternative approach towards the psychophysics of Gestalten. Vision Res 2010; 50:1194-202. [PMID: 20363241 DOI: 10.1016/j.visres.2010.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/14/2010] [Accepted: 03/27/2010] [Indexed: 11/22/2022]
|