1
|
Li S, Ye X, Tian H, Ding Z, Cui C, Shi S, Yang Y, Li G, Chen J, Lin Z, Ni Z, Xu J, Dong F. An artificial intelligence model based on transrectal ultrasound images of biopsy needle tract tissues to differentiate prostate cancer. Postgrad Med J 2024; 100:228-236. [PMID: 38142286 DOI: 10.1093/postmj/qgad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE We aimed to develop an artificial intelligence (AI) model based on transrectal ultrasonography (TRUS) images of biopsy needle tract (BNT) tissues for predicting prostate cancer (PCa) and to compare the PCa diagnostic performance of the radiologist model and clinical model. METHODS A total of 1696 2D prostate TRUS images were involved from 142 patients between July 2021 and May 2022. The ResNet50 network model was utilized to train classification models with different input methods: original image (Whole model), BNT (Needle model), and combined image [Feature Pyramid Networks (FPN) model]. The training set, validation set, and test set were randomly assigned, then randomized 5-fold cross-validation between the training set and validation set was performed. The diagnostic effectiveness of AI models and image combination was accessed by an independent testing set. Then, the optimal AI model and image combination were selected to compare the diagnostic efficacy with that of senior radiologists and the clinical model. RESULTS In the test set, the area under the curve, specificity, and sensitivity of the FPN model were 0.934, 0.966, and 0.829, respectively; the diagnostic efficacy was improved compared with the Whole and Needle models, with statistically significant differences (P < 0.05), and was better than that of senior radiologists (area under the curve: 0.667). The FPN model detected more PCa compared with senior physicians (82.9% vs. 55.8%), with a 61.3% decrease in the false-positive rate and a 23.2% increase in overall accuracy (0.887 vs. 0.655). CONCLUSION The proposed FPN model can offer a new method for prostate tissue classification, improve the diagnostic performance, and may be a helpful tool to guide prostate biopsy.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Ultrasound, The Second Clinical Medical College of Jinan University, China
| | - Xiuqin Ye
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Hongtian Tian
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhimin Ding
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Chen Cui
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Siyuan Shi
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yang Yang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Guoqiu Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jing Chen
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Ziwei Lin
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Ni
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
2
|
Texture Feature-Based Classification on Transrectal Ultrasound Image for Prostatic Cancer Detection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7359375. [PMID: 33082840 PMCID: PMC7559226 DOI: 10.1155/2020/7359375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/21/2020] [Accepted: 09/20/2020] [Indexed: 12/29/2022]
Abstract
Prostate cancer is one of the most common cancers in men. Early detection of prostate cancer is the key to successful treatment. Ultrasound imaging is one of the most suitable methods for the early detection of prostate cancer. Although ultrasound images can show cancer lesions, subjective interpretation is not accurate. Therefore, this paper proposes a transrectal ultrasound image analysis method, aiming at characterizing prostate tissue through image processing to evaluate the possibility of malignant tumours. Firstly, the input image is preprocessed by optical density conversion. Then, local binarization and Gaussian Markov random fields are used to extract texture features, and the linear combination is performed. Finally, the fused texture features are provided to SVM classifier for classification. The method has been applied to data set of 342 transrectal ultrasound images obtained from hospitals with an accuracy of 70.93%, sensitivity of 70.00%, and specificity of 71.74%. The experimental results show that it is possible to distinguish cancerous tissues from noncancerous tissues to some extent.
Collapse
|