1
|
Melo S, Alzate-Ricaurte S, Pedroza S, Moreno M, Largo J, Rivera R, Cruz G. Optimal Global Longitudinal Strain Thresholds for Pediatric Heart Surgery: Insights from a University Hospital. Pediatr Cardiol 2024; 45:780-786. [PMID: 38421480 DOI: 10.1007/s00246-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Congenital heart diseases impact millions annually, with pediatric care lacking suitable risk assessment tools. This research seeks to illuminate the association between the global longitudinal strain (GLS) and the subsequent impact on postoperative outcomes, contributing to a deeper understanding of its predictive value in the pediatric population affected by congenital heart diseases. An observational, analytic, longitudinal, and prospective study was conducted from May 2022 to May 2023, including all patients under 18 undergoing heart surgery with cardiopulmonary bypass (CBP). Patients not classifiable within the Risk Adjustment for Congenital Heart Surgery were excluded. Using transesophageal echocardiography, GLS was measured pre- and post-CPB. Receiver operating characteristic curve analysis determined GLS cut-off points for 30-day mortality risk, using Youden's method for optimal sensitivity and specificity. Bivariate and multivariate analysis identified the relationships between clinical variables. Eighty-nine patients undergoing congenital heart surgery were included. Fifteen deaths occurred. The area under the curve (AUC) for each GLS classification (pre, post, index) demonstrated effective discriminatory capacity (> 0.70) in predicting 30-day mortality. Pre-CBP GLS showed the strongest predictive power (AUC 0.833, IQR: 0.731 - 0.936) with a cut-off point of 12. Values lower than the cut-off point of pre-CPB GLS correlated with increased vasoactive-inotropic Scores and longer mechanical ventilation. GLS measurement is a reproducible method for assessing ventricular function in pediatric heart surgery, showing potential as a prognostic tool. This study marks the initial effort to establish cut-off points for preoperative GLS, postoperative GLS, and the strain index.
Collapse
Affiliation(s)
- Sofía Melo
- Departamento de Anestesiología, Facultad de Medicina, Universidad Icesi, Calle 18 No. 122-135, 760031, Cali, Colombia
| | - Sergio Alzate-Ricaurte
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cra 98 No. 18-49, 760032, Cali, Colombia
| | - Santiago Pedroza
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cra 98 No. 18-49, 760032, Cali, Colombia
| | - Mabel Moreno
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cra 98 No. 18-49, 760032, Cali, Colombia
| | - Jessica Largo
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cra 98 No. 18-49, 760032, Cali, Colombia
| | - Richard Rivera
- Facultad de Medicina, Universidad Icesi, Calle 18 No. 122-135, 760031, Cali, Colombia
| | - Gustavo Cruz
- Departamento de Anestesiología, Fundación Valle del Lili, Cra 98 No. 18-49, 760032, Cali, Colombia.
| |
Collapse
|
2
|
van der Ven JPG, Kamphuis VP, van den Bosch E, Gnanam D, Terol C, Bogers AJJC, Breur JMPJ, Berger RMF, Blom NA, Ten Harkel ADJ, Koopman L, Helbing WA. Cardiac Function and Serum Biomarkers throughout Staged Fontan Palliation: A Prospective Observational Study. J Cardiovasc Dev Dis 2023; 10:289. [PMID: 37504546 PMCID: PMC10380373 DOI: 10.3390/jcdd10070289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Fontan patients undergo multiple cardiothoracic surgeries in childhood. Following these procedures, ventricular function is temporarily decreased, and recovers over months. This is presumably related to cardiopulmonary bypass, but this is incompletely understood. Throughout the Fontan palliation, cardiac function is also affected by volume unloading. We aimed to gain insight into the biological processes related to impaired ventricular function and recovery following Fontan palliations using a panel of biomarkers. Furthermore, we described changes in ventricular function across the Fontan palliation due to volume unloading. We performed a prospective multicenter observational study in patients undergoing partial (PCPC) or total cavo-pulmonary connection (TCPC). Patients underwent assessment-including echocardiography and blood sampling-before surgery (T1), at first follow-up (T2), and 1 year after their procedures (T3). Blood samples were analyzed using a biomarker panel (OLINK CVD-III). Ninety-two biomarkers were expressed as principal components (PC) to limit multiple statistical testing. We included 32 PCPC patients aged 7.2 [5.3-10.3] months, and 28 TCPC patients aged 2.7 [2.2-3.8] years. The single ventricular longitudinal strain (SV GLS) temporarily decreased for PCPC patients at T2 (-15.1 ± 5.6 (T1) to -13.5 ± 5.2 (T2) to -17.3 ± 4.5 (T3), p < 0.047 for all differences), but not following TCPC. The serum biomarkers were expressed as 4 PCs. PC1, including biomarkers of cell-cell adhesion, was not related to any patient characteristic. PC2, including biomarkers of superoxide anion regulation, increased at T2. PC3, including biomarkers of cardiovascular development, related to the stage of Fontan palliation. PC4 was of uncertain biological or clinical significance. No PC was found that related to ventricular performance. The SV GLS was temporarily diminished following PCPC, but not following TCPC. Several biomarkers were related to post-operative stress and adaptation to the PCPC or TCPC circulation, but none were related to the outcome.
Collapse
Affiliation(s)
- J P G van der Ven
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
- Netherlands Heart Institute, 3501 DG Utrecht, The Netherlands
- Department of Cardiothoracic Surgery, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - V P Kamphuis
- Netherlands Heart Institute, 3501 DG Utrecht, The Netherlands
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | - E van den Bosch
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
- Netherlands Heart Institute, 3501 DG Utrecht, The Netherlands
| | - D Gnanam
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| | - C Terol
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | - A J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - J M P J Breur
- Division of Pediatric Cardiology, Department of Pediatrics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - R M F Berger
- Division of Pediatric Cardiology, Department of Pediatrics, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - N A Blom
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
- Division of Pediatric Cardiology, Department of Pediatrics, Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - A D J Ten Harkel
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | - L Koopman
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| | - W A Helbing
- Division of Pediatric Cardiology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
3
|
Atrial Function Impairments after Pediatric Cardiac Surgery Evaluated by STE Analysis. J Clin Med 2022; 11:jcm11092497. [PMID: 35566624 PMCID: PMC9105784 DOI: 10.3390/jcm11092497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Applications of atrial speckle tracking echocardiography (STE) strain (ε) analysis in pediatric cardiac surgery have been limited. This study aims to evaluate the feasibility of atrial STE ε analysis and the progression of atrial ε values as a function of post-operative time in children after pediatric cardiac surgery. Methods: 131 children (mean 1.69 ± 2.98; range 0.01−15.16 years) undergoing cardiac surgery were prospectively enrolled. Echocardiographic examinations were performed pre-operatively and at 3 different post-operative intervals: Time 1 (24−36 h), Time 2 (3−5 days), Time 3 (>5 days, before discharging). The right and left atrium longitudinal systolic contractile (Ct), Conduit (Cd), and Reservoir (R) ε were evaluated with a novel atrial specific software with both P- and R-Gating methods. One hundred and thirty-one age-matched normal subjects (mean 1.7 ± 3.2 years) were included as controls. Results: In all, 309 examinations were performed over the post-operative times. For each post-operative interval, all STE atrial ε parameters assessed were significantly lower compared to controls (all p < 0.0001). The lowest atrial ε values were found at Time 1, with only partial recovery thereafter (p from 0.02 to 0.04). All atrial ε values at discharge were decreased compared to the controls (all p < 0.0001). Significant correlations of the atrial ε values with cardio-pulmonary-bypass time, left and right ventricular ε values (p < 0.05), and ejection fraction (p < 0.05) were demonstrated. Conclusions: Atrial ε is highly reduced after surgery with only partial post-operative recovery in the near term. Our study additionally demonstrates that post-surgical atrial and ventricular ε responses correlated with each other.
Collapse
|
4
|
Left Ventricular Systolic Impairment after Pediatric Cardiac Surgery Assessed by STE Analysis. Healthcare (Basel) 2021; 9:healthcare9101338. [PMID: 34683018 PMCID: PMC8544436 DOI: 10.3390/healthcare9101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Speckle-tracking echocardiography (STE) has gained increasing value in the evaluation of congenital heart diseases (CHD); however, its use in pediatric cardiac surgery is limited. Aim: To evaluate left ventricular (LV) systolic impairment after biventricular pediatric cardiac surgery by STE strain (ε) analysis. Methods: We prospectively enrolled 117 children undergoing cardiac surgery for CHD. Echocardiography was performed at four different times: pre-operatively, 12–36 h (Time 1), 3–5 days (Time 2), and 6–8 days (Time 3). Images were obtained in the 4-2-and 3 apical chamber’s views to derive LV global and regional (basal/mid/apical) ε values. Results: At different postoperative times, we performed 320 examinations in 117 children (mean age: 2.4 ± 3.9, range: 0–16 years); 117 age-matched healthy children served as controls. All global, basal, and mid LVε values decreased after surgery; the lowest values being at Time 1 (p < 0.0001), which increased thereafter. At discharge, all global, basal, and mid LVε values remained lower than in pre-operative and healthy children (p < 0.05). Instead, apical segments (lowest at baseline) increased after surgery (p < 0.0001) but remained lower compared to controls. LV ejection fraction (LVEF) decreased at Time 1 (p = 0.0004) but promptly recovered to Time 2 and normalized at Time 3. Conclusions: STE ε analysis revealed a significant LV systolic impairment after surgery with amelioration thereafter but incomplete normalization at discharge. Base-apex differences emerged with apical segments that, contrary to all the other regions, showed relative hypercontractility after surgery. The slower recovery of LVε values compared to LVEF suggests that STE ε analysis may be more accurate for the follow-up of mild LV post-surgical impairment.
Collapse
|
5
|
Li C, Li K, Yuan M, Bai W, Rao L. Peak strain dispersion within the left ventricle detected by two-dimensional speckle tracking in patients with uncomplicated systemic lupus erythematosus. Int J Cardiovasc Imaging 2021; 37:2197-2205. [PMID: 33661409 DOI: 10.1007/s10554-021-02201-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 02/05/2023]
Abstract
Systemic lupus erythematosus (SLE) often leads to various cardiovascular diseases. We aimed to investigate the value of peak strain dispersion (PSD) in evaluating left ventricular dysfunction in patients with uncomplicated SLE. Eighty-seven female SLE patients and fifty-nine healthy female controls were recruited. The SLE patients were divided into inactive disease (SLE disease activity index (SLEDAI) ≤ 4; n = 48) and active disease (SLEDAI ≥ 5; n = 39) subgroups. Traditional echocardiography and two-dimensional speckle-tracking echocardiography were performed using a GE VividE9 ultrasound diagnostic system and an advanced quantitative analysis EchoPAC workstation (version 201), respectively. The global longitudinal strain (GLS) in the SLE with SLEDAI ≤ 4 group was comparable to that in the control group (- 19.89% vs - 20.7%; P = 0.061). However, GLS was obviously damaged in the SLE with SLEDAI ≥ 5 group compared with that in the control group (- 19.07% vs - 20.7%; P < 0.001). PSD impairment was observed in the SLE with SLEDAI ≤ 4 group (33.83 ms vs 31.44 ms; P = 0.012) and SLE with SLEDAI ≥ 5 groups (52.31 ms vs 31.44 ms; P < 0.001), but the largest difference was observed in the active disease group. Linear regression analysis showed that PSD was moderately correlated with the SLEDAI (r = 0.535; P < 0.001) in SLE patients with SLEDAI ≤ 4 and showed the best correlation with the SLEDAI (r = 0.646; P < 0.001) in the SLE patients with SLEDAI ≥ 5. A correlation between GLS and the SLEDAI (r = 0.359; P = 0.025) was found in the active disease group but not in the inactive disease group (r = 0.253; P = 0.082). PSD is more comprehensive and accurate for evaluating left ventricular subclinical dysfunction in SLE patients. In inactive SLE patients, PSD is a more sensitive index to evaluate early systolic dysfunction of the left ventricle. GLS may be a more vulnerable indicator of early left ventricular cardiac dysfunction in active SLE patients. Controlling disease activity may reduce the events of cardiac dysfunction.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Kun Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Miao Yuan
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenjuan Bai
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
6
|
Tsuda T, Kernizan D, Del Grippo E, Thacker D, Kharouf R, Srivastava S. Echocardiographic assessment of ventricular function: Conventional and advanced technologies and their clinical applications. PROGRESS IN PEDIATRIC CARDIOLOGY 2020. [DOI: 10.1016/j.ppedcard.2020.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Thorlacius EM, Wåhlander H, Ojala T, Ylänen K, Keski-Nisula J, Synnergren M, Romlin BS, Ricksten SE, Castellheim A. Levosimendan Versus Milrinone for Inotropic Support in Pediatric Cardiac Surgery: Results From a Randomized Trial. J Cardiothorac Vasc Anesth 2020; 34:2072-2080. [DOI: 10.1053/j.jvca.2020.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022]
|
8
|
Abuelkasem E, Wang DW, Subramaniam K. Pro: Myocardial Deformation Imaging Should Be Used Perioperatively for Assessment of Cardiac Function. J Cardiothorac Vasc Anesth 2019; 33:3196-3200. [DOI: 10.1053/j.jvca.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 11/11/2022]
|
9
|
Karsenty C, Hadeed K, Dulac Y, Semet F, Alacoque X, Breinig S, Leobon B, Acar P, Hascoet S. Two-dimensional right ventricular strain by speckle tracking for assessment of longitudinal right ventricular function after paediatric congenital heart disease surgery. Arch Cardiovasc Dis 2017; 110:157-166. [DOI: 10.1016/j.acvd.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022]
|