1
|
Botelho ADO, Bernardo Ribeiro F, Soares Machado J, Souza DCBD. Functional connectivity alterations in individuals with gaming disorder assessed by functional magnetic resonance imaging: a systematic review. J Addict Dis 2025; 43:4-11. [PMID: 38468374 DOI: 10.1080/10550887.2024.2322861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Neuroimaging has continually advanced, playing a crucial role in the accurate diagnosis of various brain pathologies and disorders. This integrative review aimed to identify the main changes in brain connections found in fMRI scans of individuals with Internet Gaming Disorder (IGD). The data collection method involved searching for the terms "Magnetic Resonance Imaging", "Psychological Dependence" and "Internet Addiction Disorder" in the PubMed and Embase databases. Studies published between 2020 and January 2023 were included and manually analyzed through the virtual environment created in the "Rayyan" software, compiling a total of 18 scientific studies. The main findings reveal changes such as significant increases or decreases in functional connectivity in certain regions of the brain. Some potential negative impacts on the uncontrolled use of technologies among the young population were evaluated, such as the loss of inhibitory control in decision-making, transforming leisure into dependence, and although the IGD understands the associated risks and harms, it faces difficulties in resisting the desire to stop playing. This situation emphasizes the need for more long-term studies that can be comparative between different age groups. Conclusion, the brain regions with the most significant changes in functional connectivity in individuals with IGD symptoms are the prefrontal cortex, fronto-parietal regions, frontal gyrus, insula lobe, cingulate cortex and striatum. The lack of comprehensive knowledge about the effects of video game addiction across different age groups is a significant concern. Therefore, it is essential to carry out research that evaluates the impact of these technologies on different stages of human development.
Collapse
|
2
|
Mei B, Tao Q, Dang J, Niu X, Sun J, Zhang M, Wang W, Han S, Zhang Y, Cheng J. Meta-analysis of structural and functional abnormalities in behavioral addictions. Addict Behav 2024; 157:108088. [PMID: 38924904 DOI: 10.1016/j.addbeh.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The incidence of behavioral addictions (BAs) associated with scientific and technological advances has been increasing steadily. Unfortunately, a large number of studies on the structural and functional abnormalities have shown poor reproducibility, and it remains unclear whether different addictive behaviors share common underlying abnormalities. Therefore, our objective was to conduct a quantitative meta-analysis of different behavioral addictions to provide evidence-based evidence of common structural and functional changes. METHODS We conducted systematic searches in PubMed, Web of Science and Scopus from January 2010 to December 2023, supplementing reference lists of high-quality relevant meta-analyses and reviews, to identify eligible voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies. Using anisotropic seed-based D-Mapping (AES-SDM) meta-analysis methods, we compared brain abnormalities between BAs and healthy controls (HCs). RESULTS There were 11 GMV studies (287 BAs and 292 HCs) and 26 fMRI studies (577 BAs and 545 HCs) that met inclusion criteria. Compared with HCs, BAs demonstrated significant reductions in gray matter volume (GMV) in (1) right anterior cingulate gyri extending into the adjacent superior frontal gyrus, as well as in the left inferior frontal gyrus and right striatum. (2) the bilateral precuneus, right supramarginal gyrus, and right fusiform gyrus were hyperfunction; (3) the left medial cingulate gyrus extended to the superior frontal gyrus, the left inferior frontal gyrus, and right middle temporal gyrus had hypofunction. CONCLUSIONS Our study identified structural and functional impairments in brain regions involved in executive control, cognitive function, visual memory, and reward-driven behavior in BAs. Notably, fronto-cingulate regions may serve as common biomarkers of BAs.
Collapse
Affiliation(s)
- Bohui Mei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
3
|
Skok K, Waszkiewicz N. Biomarkers of Internet Gaming Disorder-A Narrative Review. J Clin Med 2024; 13:5110. [PMID: 39274323 PMCID: PMC11396063 DOI: 10.3390/jcm13175110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Since game mechanics and their visual aspects have become more and more addictive, there is concern about the growing prevalence of Internet gaming disorder (IGD). In the current narrative review, we searched PubMed and Google Scholar databases for the keywords "igd biomarker gaming" and terms related to biomarker modalities. The biomarkers we found are grouped into several categories based on a measurement method and are discussed in the light of theoretical addiction models (tripartite neurocognitive model, I-PACE). Both theories point to gaming-related problems with salience and inhibition. The first dysfunction makes an individual more susceptible to game stimuli (raised reward seeking), and the second negatively impacts resistance to these stimuli (decreased cognitive control). The IGD patients' hypersensitivity to reward manifests mostly in ventral striatum (VS) measurements. However, there is also empirical support for a ventral-to-dorsal striatal shift and transition from goal-directed to habitual behaviors. The deficits in executive control are demonstrated in parameters related to the prefrontal cortex (PFC), especially the dorsolateral prefrontal cortex (DLPFC). In general, the connection of PFC with reward under cortex nuclei seems to be dysregulated. Other biomarkers include reduced P3 amplitudes, high-frequency heart rate variability (HRV), and the number of eye blinks and saccadic eye movements during the non-resting state. A few studies propose a diagnostic (multimodal) model of IGD. The current review also comments on inconsistencies in findings in the nucleus accumbens (NAcc), anterior cingulate cortex (ACC), and precuneus and makes suggestions for future IGD studies.
Collapse
Affiliation(s)
- Katarzyna Skok
- Faculty of Education, University of Bialystok, ul. Świerkowa 20, 15-328 Bialystok, Poland
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Bialystok, Poland
| |
Collapse
|
4
|
Xie H, Wang Y, Zhu F, Zhang F, Wu B, Zhao Z, Gan R, Gong Q, Jia Z. Genes associated with cortical thickness alterations in behavioral addiction. Cereb Cortex 2024; 34:bhae298. [PMID: 39051658 DOI: 10.1093/cercor/bhae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Yuanyuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Fei Zhu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ziru Zhao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ruoqiu Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Fujimoto Y, Fujino J, Matsuyoshi D, Jitoku D, Kobayashi N, Qian C, Okuzumi S, Tei S, Tamura T, Ueno T, Yamada M, Takahashi H. Neural responses to gaming content on social media in young adults. Behav Brain Res 2024; 467:115004. [PMID: 38631660 DOI: 10.1016/j.bbr.2024.115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Excessive gaming can impair both mental and physical health, drawing widespread public and clinical attention, especially among young generations. People are now more exposed to gaming-related content on social media than before, and this exposure may have a significant impact on their behavior. However, the neural mechanisms underlying this effect remain unexplored. Using functional magnetic resonance imaging (fMRI), this study aimed to investigate the neural activity induced by gaming-related content on social media among young adults casually playing online games. While being assessed by fMRI, the participants watched gaming-related videos and neutral (nongaming) videos on social media. The gaming-related cues significantly activated several brain areas, including the medial prefrontal cortex, posterior cingulate cortex, hippocampus, thalamus, superior/middle temporal gyrus, precuneus and occipital regions, compared with the neutral cues. Additionally, the participants' gaming desire levels positively correlated with a gaming-related cue-induced activation in the left orbitofrontal cortex and the right superior temporal gyrus. These findings extend previous studies on gaming cues and provide useful information to elucidate the effects of gaming-related content on social media in young adults. Continued research using real-world gaming cues may help improve our understanding of promoting gaming habits and provide support to individuals vulnerable to gaming addiction.
Collapse
Affiliation(s)
- Yuka Fujimoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
| | - Daisuke Matsuyoshi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nanase Kobayashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Okuzumi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute of Applied Brain Sciences, Waseda University, Saitama, Japan; School of Human and Social Sciences, Tokyo International University, Saitama, Japan
| | - Takehiro Tamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Jitoku D, Kobayashi N, Fujimoto Y, Qian C, Okuzumi S, Tei S, Matsuyoshi D, Tamura T, Takahashi H, Ueno T, Yamada M, Fujino J. Explicit and implicit effects of gaming content on social media on the behavior of young adults. Front Psychol 2024; 15:1332462. [PMID: 38328373 PMCID: PMC10847366 DOI: 10.3389/fpsyg.2024.1332462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Excessive gameplay can have negative effects on both mental and physical health, especially among young people. Nowadays, social media platforms are bombarding users with gaming-related content daily. Understanding the effect of this content on people's behavior is essential to gain insight into problematic gaming habits. However, this issue is yet to be studied extensively. In this study, we examined how gaming-related content on social media affects young adults explicitly and implicitly. We studied 25 healthy young adults (average age 21.5 ± 2.2) who played online games casually and asked them to report their gaming desire. We also conducted an implicit association test (IAT) to measure their implicit attitudes toward gaming-related content. We also investigated the relationship between these measures and various psychological factors, such as personality traits, self-efficacy, impulsiveness, and cognitive flexibility. The results revealed that participants had a higher explicit gaming desire when exposed to gaming-related cues on social media than neutral cues. They also had a robust positive implicit attitude toward gaming-related content on social media. Explicit gaming desire was positively correlated with neuroticism levels. Furthermore, the IAT effect was negatively correlated with self-efficacy and cognitive flexibility levels. However, there were no significant correlations between explicit gaming desire/IAT effect and impulsiveness levels. These findings suggest that gaming-related content on social media can affect young adults' behavior both explicitly and implicitly, highlighting the need for further research to prevent gaming addiction in vulnerable individuals.
Collapse
Affiliation(s)
- Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nanase Kobayashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Fujimoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Okuzumi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Saitama, Japan
| | - Daisuke Matsuyoshi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takehiro Tamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
7
|
Diers M, Müller SM, Mallon L, Schmid AM, Thomas TA, Klein L, Krikova K, Stark R, Wegmann E, Steins-Loeber S, Brand M, Antons S. Cue-reactivity to distal cues in individuals at risk for gaming disorder. Compr Psychiatry 2023; 125:152399. [PMID: 37437451 DOI: 10.1016/j.comppsych.2023.152399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Gaming disorder (GD) is a disorder due to addictive behaviors (ICD-11). Cue-reactivity and craving are relevant mechanisms in the development and maintenance of addictive behaviors. When confronted with cues showing in-game content (proximal cues) individuals with higher symptom severity show increased cue-reactivity. Based on conditioning and addiction theories on incentive sensitization, cue-reactivity responses may generalize to more distal cues, e.g. when individuals at risk of developing a GD are confronted with a starting page of an online game. In cue-reactivity paradigms so far, only proximal gaming cues have been used. METHODS We investigated the effect of distal gaming cues compared to gaming-unrelated control cues on cue-reactivity and craving in 88 individuals with non-problematic use of online games (nPGU) and 69 individuals at risk for GD (rGD). The distal cues showed the use of an electronic device (e.g., desktop PC or smartphone) whose screen showed starting pages of either games (target cues), shopping- or pornography sites (control cues) from a first-person perspective. FINDINGS We found significantly higher urge and arousal ratings as well as longer viewing times for gaming-related compared to gaming-unrelated control cues in rGD compared to nPGU. Valence ratings did not differ between groups. INTERPRETATION The results demonstrate that already distal gaming-specific cues lead to cue-reactivity and craving in rGD. This finding indicates that based on conditioning processes, cue-reactivity and craving develop during the course of GD and generalize to cues that are only moderately related to the specific gaming activity.
Collapse
Affiliation(s)
- Martin Diers
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Silke M Müller
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Lukas Mallon
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Anna M Schmid
- Department of Clinical Psychology and Psychotherapy, Otto-Friedrich University of Bamberg, Bamberg, Germany
| | - Tobias A Thomas
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Lena Klein
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany
| | - Kseniya Krikova
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen, Germany; Clinical Psychology and Psychotherapy, University Siegen, Siegen, Germany; Bender Institute for Neuroimaging, Justus Liebig University, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen, Germany; Bender Institute for Neuroimaging, Justus Liebig University, Giessen, Germany; Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Germany
| | - Elisa Wegmann
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany
| | - Sabine Steins-Loeber
- Department of Clinical Psychology and Psychotherapy, Otto-Friedrich University of Bamberg, Bamberg, Germany
| | - Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Stephanie Antons
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
8
|
Liu X, Zheng Y, Niculescu M, Liang Q, Yang A, Dong G, Gao Z, Lin P, Liu Y, Chen L, Xu D. The involvement of spontaneous brain activity in natural recovery from internet gaming disorder: A resting-state fMRI study. Front Psychiatry 2023; 14:1093784. [PMID: 36896348 PMCID: PMC9990821 DOI: 10.3389/fpsyt.2023.1093784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE Internet gaming disorder (IGD) can seriously impair an individual's physical and mental health. However, unlike the majority of those suffering from substance addiction, individuals with IGD may recover without any professional intervention. Understanding the brain mechanisms of natural recovery from IGD may provide new insight into how to prevent addiction and implement more targeted interventions. METHODS Sixty individuals with IGD were scanned by using a resting-state fMRI to assess brain region changes associated with IGD. After 1 year, 19 individuals with IGD no longer met the IGD criteria and were considered recovered (RE-IGD), 23 individuals still met the IGD criteria (PER-IGD), and 18 individuals left the study. The brain activity in resting state between 19 RE-IGD individuals and 23 PER-IGD individuals was compared by using regional homogeneity (ReHo). Additionally, brain structure and cue-craving functional MRIs were collected to further support the results in the resting-state. RESULTS The resting-state fMRI results revealed that activity in brain regions responsible for reward and inhibitory control [including the orbitofrontal cortex (OFC), the precuneus and the dorsolateral prefrontal cortex (DLPFC)] was decreased in the PER-IGD individuals compared to RE-IGD individuals. In addition, significant positive correlations were found between mean ReHo values in the precuneus and self-reported craving scores for gaming, whether among the PER-IGD individuals or the RE-IGD individuals. Furthermore, we found similar results in that brain structure and cue-craving differences exist between the PER-IGD individuals and RE-IGD individuals, specifically in the brain regions associated with reward processing and inhibitory control (including the DLPFC, anterior cingulate gyrus, insula, OFC, precuneus, and superior frontal gyrus). CONCLUSION These findings indicate that the brain regions responsible for reward processing and inhibitory control are different in PER-IGD individuals, which may have consequences on natural recovery. Our present study provides neuroimaging evidence that spontaneous brain activity may influence natural recovery from IGD.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yawen Zheng
- Lishui Second Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Michelle Niculescu
- Department of Social Sciences, Chatham University, Pittsburgh, PA, United States
| | - Qi Liang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Ai Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Guangheng Dong
- Centers for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhonghui Gao
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Ping Lin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Danjun Xu
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| |
Collapse
|
9
|
Weinstein A. Problematic Internet usage: brain imaging findings. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kim SJ, Eom H, Hoon Jung Y, Kim MK, Kim E, Kim JJ. Brain functional connectivity during and after imagery of gaming and alternative leisure activities in patients with internet gaming disorder. Neurosci Lett 2022; 772:136451. [PMID: 35041909 DOI: 10.1016/j.neulet.2022.136451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The effect of gaming cue exposure on brain activity in patients with internet gaming disorder (IGD) has been investigated a lot, but the effect on brain connectivity has not. This study aimed to investigate the effects of imageries of gaming and alternative leisure activities on functional connectivity during the during-task and post-task states in patients with IGD. METHODS Twenty-nine patients and 20 healthy controls were scanned in the 6-min states before, during, and after the imagery tasks for gaming and alternative leisure behaviors using fMRI. Seed-based functional connectivity during and after the tasks were analyzed. The seeds were the nucleus accumbens (NAcc), ventral tegmental area (VTA), caudate, putamen, anterior cingulate cortex (ACC), and posterior cingulate cortex. RESULTS The group-by-state interaction effects for the during-tasks were found in caudate-, putamen-, and ACC-based connectivity, whereas those for the post-tasks were shown only in NAcc-based connectivity. In particular, patients showed that caudate-right parahippocampal gyrus connectivity and putamen-right orbitofrontal cortex connectivity increased during gaming and decreased during alternative, whereas NAcc-right precuneus connectivity decreased at baseline, increased in post-gaming, and were not different in post-alternative. CONCLUSION Differences in during-task connectivity of the habit/motor and salience networks and post-task resting-state connectivity of the reward and limbic networks between the two imagery tasks may differ between the groups. In the treatment of IGD, when these network connections are reactive to alternative leisure activity, just as to gaming activity, they seem to be freed from gaming addiction.
Collapse
Affiliation(s)
- Soo-Jeong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyojung Eom
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Jung
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyeong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjoo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang J, Chen S, Jiang Q, Dong H, Zhao Z, Du X, Dong GH. Disturbed craving regulation to gaming cues in internet gaming disorder: Implications for uncontrolled gaming behaviors. J Psychiatr Res 2021; 140:250-259. [PMID: 34119910 DOI: 10.1016/j.jpsychires.2021.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ability to control craving for games is very important to abstain from Internet gaming disorder (IGD) and abundant clinical evidence has suggested that craving dysregulation is the essential pathogenesis for IGD. However, the neural mechanism underlying this feature remains unclear. METHODS Subjective evaluation and fMRI data from 44 participants (IGD participants: 21; recreational Internet game users (RGUs): 23) were collected while they were performing a regulation of craving task. We analyzed and compared their brain features while they regulated cravings to gaming stimuli. RESULTS Compared to RGUs, IGD participants showed enhanced brain activation in the right anterior cingulate cortex, posterior cingulate cortex (PCC), orbitofrontal cortex and middle temporal gyrus and in the left dorsolateral prefrontal cortex and thalamus during the regulation of craving task. Generalized psychophysiological interaction (gPPI) analysis revealed that IGD participants showed decreased functional connectivity between the right PCC and right inferior parietal lobule compared to that in RGU participants. CONCLUSIONS The results suggested that deficits of craving regulation in IGD participant were associated with the imbalanced coordination between the reward network and the executive network. Enhanced game-seeking motivation and disturbed executive control are responsible for craving dysregulation in IGD participants. These findings suggest a biological mechanism for IGD that may help in finding potential interventions.
Collapse
Affiliation(s)
- Jialin Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; State Key Laboratory of Cognitive Neuroscience and Learning, Bejing Normal University, Beijing, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Qing Jiang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Haohao Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhen Zhao
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Zhou WR, Wang M, Zheng H, Wang MJ, Dong GH. Altered modular segregation of brain networks during the cue-craving task contributes to the disrupted executive functions in internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110256. [PMID: 33503493 DOI: 10.1016/j.pnpbp.2021.110256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have shown that gaming-related cues could induce gaming cravings and bring about changes in brain activities in subjects with Internet gaming disorder (IGD). However, little is known about the brain network organizations in IGD subjects during a cue-craving task and the relationship between this network organization and IGD severity. METHODS Sixty-one IGD subjects and 61 matched recreational game users (RGUs) were scanned while performing a cue-craving task. We calculated and compared the participation coefficient (PC) among brain network modules between IGD subjects and RGUs. Based on the results, further group comparison analyses were performed to explain the PC changes and to explore the relationship between PCs and IGD severity. RESULTS While performing a cue-craving task, compared with RGUs, IGD subjects showed significantly decreased PCs in the default-mode network (DMN) and the frontal-parietal network (FPN). Specifically, the number of connections between nodes in the ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex and other nodes in the DMN of IGD subjects was much larger than that in RGUs. Correlation results showed that the number of DMN intra-modular connections was positively correlated with addiction severity and craving degree. CONCLUSIONS These results provide neural evidence that can explain why cognitive control, emotion, attention and other functions are impaired in IGD subjects in the face of gaming cues, which leads to compulsive behavior toward games. These findings extend our understanding of the neural mechanism of IGD and have important implications for developing effective interventions to treat IGD subjects.
Collapse
Affiliation(s)
- Wei-Ran Zhou
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Meng-Jing Wang
- Southeast University, Monash University Joint Graduate School, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
13
|
Zhou W, Zheng H, Wang M, Zheng Y, Chen S, Wang MJ, Dong GH. The imbalance between goal-directed and habitual systems in internet gaming disorder: Results from the disturbed thalamocortical communications. J Psychiatr Res 2021; 134:121-128. [PMID: 33383495 DOI: 10.1016/j.jpsychires.2020.12.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/10/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Converging evidence has identified the imbalance between goal-directed systems and habitual systems in the addiction process. The thalamocortical loop plays an important role in the habitual/goal-directed system. However, little is known about the role of the thalamus in goal-directed and habitual systems in Internet gaming disorder (IGD) patients. This study investigated whether thalamocortical circuit was disrupted and how they affected goal-directed and habitual behaviors in IGD patients. METHODS This is a functional magnetic resonance imaging (fMRI) study. Twenty-five IGD patients and 25 matched recreational game users (RGUs) were scanned when they were in a resting state and were performing an instrumental learning task to obtain behavioral data related to habitual/goal-directed behavior. We used the whole-brain seed-based functional connectivity (FC) of the four thalamic nuclei (bilateral) and correlation analyses to examine the thalamocortical loop difference and relationship with habitual/goal-directed performance. RESULTS Compared with RGUs, IGD patients demonstrated significantly increased FC between the left midline nucleus (MN) and the right postcentral gyrus (PCG), and between the pulvinar and medial frontal gyrus (MFG). Correlation results showed that within the IGD group, the correct response rates of the participants to inconsistent stimulus-result pairs were positively correlated with the FC between the pulvinar and MFG. Inhibition-control scores were negatively correlated with the FC between the left MN and the PCG. CONCLUSIONS IGD patients showed disrupted thalamocortical communication that could further result in an imbalance between the goal-directed and habitual systems in IGD patients. These findings provide more information about the involvement of the thalamus in the pathophysiology of IGD, and as potential circuit-level biomarkers of IGD patients, these circuit alterations may be useful in treatment development and in monitoring treatment outcomes.
Collapse
Affiliation(s)
- Weiran Zhou
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Yanbin Zheng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Meng-Jing Wang
- Southeast University - Monash University Joint Graduate School, Southeast University, PR China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
14
|
|
15
|
Zhang J, Hu Y, Wang Z, Wang M, Dong GH. Males are more sensitive to reward and less sensitive to loss than females among people with internet gaming disorder: fMRI evidence from a card-guessing task. BMC Psychiatry 2020; 20:357. [PMID: 32635911 PMCID: PMC7341652 DOI: 10.1186/s12888-020-02771-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/29/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Many studies have found an interesting issue in the Internet gaming disorder (IGD): males are always observed to be the majority. However, there are little research to exploring the differences in the neural mechanisms between males and females in decision-making process among people with IGD. Therefore, explore the reward/loss processing between different gender with IGD could help in understanding the underlying neural mechanism of IGD. METHODS Data from functional magnetic resonance imaging (fMRI) were collected from 111 subjects (IGD: 29 males, 25 females; recreational internet game user (RGU): 36 males, 21 females) while they were performing a card-guessing task. We collected and compared their brain features when facing the win and loss conditions in different groups. RESULTS For winning conditions, IGD group showed hypoactivity in the lingual gyrus than RGU group, male players showed hyperactivity in the left caudate nucleus, bilateral cingulate gyrus, right middle frontal gyrus (MFG), right precuneus and inferior parietal lobule relative to the females. And significant sex-by-group interactions results showed higher brain activities in the thalamus, parahippocampal gyrus and lower brain activities in Inferior frontal gyrus (IFG) were observed in males with IGD than females. For losing conditions, IGD group showed hypoactivity in the left lingual gyrus, parahippocampal gyrus and right anterior cingulate cortex (ACC) compared to the RGU group, male players showed hyperactive left caudate nucleus and hypoactive right middle occipital gyrus relative to females. And significant sex-by-group interactions results showed that compared to females with IGD, males with IGD showed decreased brain activities in the IFG and lingual gyrus. CONCLUSIONS First, there appeared to be no difference in reward processing between the IGD and RGU group, but IGD showed less sensitivity to loss. Secondly, male players showed more sensitivity to rewards and less sensitivity to losses. Last but not least, males and females showed opposite activation patterns in IGD degree and rewards/losses processing. And male IGD subjects are more sensitive to reward and less sensitive to loss than females, which might be the reason for the gender different rates on IGD.
Collapse
Affiliation(s)
- Jialin Zhang
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China
| | - Yan Hu
- Department of Creative Technologies, Blekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
| | - Ziliang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing, China
| | - Min Wang
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, Institute of Psychological Research, Hangzhou Normal University, Hangzhou, 311121, Zhejiang Province, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|