1
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
3
|
Wang F, Qi L, Zhang Z, Duan H, Wang Y, Zhang K, Li J. The Mechanism and Latest Research Progress of Blood-Brain Barrier Breakthrough. Biomedicines 2024; 12:2302. [PMID: 39457617 PMCID: PMC11504064 DOI: 10.3390/biomedicines12102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The bloodstream and the central nervous system (CNS) are separated by the blood-brain barrier (BBB), an intricate network of blood vessels. Its main role is to regulate the environment within the brain. The primary obstacle for drugs to enter the CNS is the low permeability of the BBB, presenting a significant hurdle in treating brain disorders. In recent years, significant advancements have been made in researching methods to breach the BBB. However, understanding how to penetrate the BBB is essential for researching drug delivery techniques. Therefore, this article reviews the methods and mechanisms for breaking through the BBB, as well as the current research progress on this mechanism.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Liujie Qi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Zhongna Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Huimin Duan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Yanchao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| |
Collapse
|
4
|
Mohanta YK, Biswas K, Mishra AK, Patra B, Mishra B, Panda J, Avula SK, Varma RS, Panda BP, Nayak D. Amelioration of gold nanoparticles mediated through Ocimum oil extracts induces reactive oxygen species and mitochondrial instability against MCF-7 breast carcinoma. RSC Adv 2024; 14:27816-27830. [PMID: 39224640 PMCID: PMC11367626 DOI: 10.1039/d4ra04807e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Phytomedicines are potential immunity-boosting components with effective anticystic properties, minimal side effects, and biomedical applications, making them valuable for combating various diseases. India is renowned globally for Ayurveda, an ancient treatment methodology known for its holistic approach in identifying the root cause of diseases. Tulsi (Ocimum sanctum) is a common household medicine in India. While essential oils from plants like Tulsi have long been recognized for their medicinal properties, there is a gap in understanding their potential in synthesizing gold nanoparticles (AuNPs) and their efficacy against breast carcinoma, particularly in the context of immunosuppressive conditions. We investigated the potential application of essential oils isolated from O. sanctum in the synthesis of AuNPs and their efficacy against MCF-7 breast carcinoma. Gas chromatography-mass spectroscopy identified compounds with potential anticancer effects against breast cancer cells. Synthesised AuNPs displayed high hemocompatibility and antimicrobial activity against nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis strains. Os-AuNPs induced chromosomal instability and mitotic arrest in the G2/M cell cycle phase. Subsequent fluorescence and cell cytometry studies demonstrated the systemic release of ROS, depolarisation of mitochondrial membrane potential, and production of apoptotic bodies. DNA damage and comet assays confirmed the anticancer potential of synthesised AuNPs. This study illuminates the potential of O. sanctum-derived AuNPs in breast carcinoma treatment, paving the way for future AuNP-based therapies in biomedicine.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya Techno City, 9th Mile, Baridua, Ri-Bhoi 793101 Meghalaya India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education Kelambakkam 603103 Tamil Nadu India
| | - Kunal Biswas
- Centre for Nanoscience & Nanotechnology International Research Centre, Sathyabama Institute of Science and Technology Jeppiaar Nagar, Rajiv Gandhi Salai Chennai 600119 India
| | | | - Biswajit Patra
- Department of Botany, Fakir Mohan University Balasore 756020 Odisha India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT) Gandipet Hyderabad 500075 Telangana India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya Techno City, 9th Mile, Baridua, Ri-Bhoi 793101 Meghalaya India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa Nizwa 616 Oman
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, 20 Federal University of São Carlos 13565-905 São Carlos SP Brazil
| | - Bibhu Prasad Panda
- Environmental Sciences, Department of Chemistry, ITER, Siksha "O" Anusandhan (Deemed to be University) Bhubaneswar 751030 Odisha India
| | - Debasis Nayak
- Bioresources and Traditional Knowledge Laboratory, Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanja Deo University Sriram Chandra Vihar, Takatpur Baripada 757003 India
| |
Collapse
|
5
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
6
|
Yin T, Han J, Cui Y, Shang D, Xiang H. Prospect of Gold Nanoparticles in Pancreatic Cancer. Pharmaceutics 2024; 16:806. [PMID: 38931925 PMCID: PMC11207630 DOI: 10.3390/pharmaceutics16060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| |
Collapse
|
7
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
8
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
9
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Kaftan G, Erdoğan MA, El-Shazly M, Lu MC, Shih SP, Lin HY, Saso L, Armagan G. Heteronemin promotes iron-dependent cell death in pancreatic cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1865-1874. [PMID: 37773525 DOI: 10.1007/s00210-023-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
The marine environment has been recognized as a prolific source of potent bioactive compounds with significant anticancer properties. Among these, heteronemin, a sesterterpenoid-type natural product, has shown promise. This study delves into the potential of heteronemin as a ferroptotic agent against pancreatic cancer, using the Panc-1 cell line as a model. The cytotoxic potential of heteronemin was assessed using cell viability assays. Furthermore, its effect on lipid peroxidation was determined spectrophotometrically, while the changes it induced in autophagy- and ferritin-related protein expressions were evaluated using immunoblotting techniques. Various cell-based tests were employed to scrutinize its anticancer efficacy. Heteronemin displayed a notable cytotoxic effect, reducing cell viability by 50% at a concentration of 55 nM. This cytotoxicity was discernibly linked to ferroptosis, as evidenced by the reversal of cell death upon treatment with the ferroptosis inhibitor, ferrostatin-1. Heteronemin treatment led to a marked increase in ferroptosis markers and malondialdehyde (MDA) levels. Conversely, the expression of glutathione peroxidase-4 (GPX4), a key anti-ferroptotic protein, was suppressed. Furthermore, significant modulations in the expression of ferritinophagy- and iron-related proteins such as Atg5, Atg7, FTL, STEAP3, and DMT-1 were evident post-treatment (p < 0.05). This study underscores the potential of heteronemin as a ferroptosis inducer in pancreatic cancer cells. Given its robust cytotoxicity, heteronemin emerges as a promising lead compound for further exploration in cancer therapeutics.
Collapse
Affiliation(s)
- Gizem Kaftan
- Doctoral Degree Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey
| | - Mümin Alper Erdoğan
- Department of Physiology, Faculty of Medicine, Izmir Katip Çelebi University, Çiğli, Izmir, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, 11566, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, 944, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University (NSYSU), 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Kaohsiung, Taiwan
- Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung, 824, Taiwan
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
11
|
Malik MA, Hashmi AA, Al-Bogami AS, Wani MY. Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. J Mater Chem B 2024; 12:552-576. [PMID: 38116755 DOI: 10.1039/d3tb01976d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry, University of Kashmir, 190006 Srinagar, Jammu and Kashmir, India.
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Dhir S, Bhatt S, Chauhan M, Garg V, Dutt R, Verma R. An Overview of Metallic Nanoparticles: Classification, Synthesis, Applications, and their Patents. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:415-432. [PMID: 37680162 DOI: 10.2174/1872210517666230901114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Nanotechnology has gained enormous attention in pharmaceutical research. Nanotechnology is used in the development of nanoparticles with sizes ranging from 1-100 nm, with several extraordinary features. Metallic nanoparticles (MNPs) are used in various areas, such as molecular biology, biosensors, bio imaging, biomedical devices, diagnosis, pharmaceuticals, etc., for their specific applications. METHODOLOGY For this study, we have performed a systematic search and screening of the literature and identified the articles and patents focusing on various physical, chemical, and biological methods for the synthesis of metal nanoparticles and their pharmaceutical applications. RESULTS A total of 174 references have been included in this present review, of which 23 references for recent patents were included. Then, 29 papers were shortlisted to describe the advantages, disadvantages, and physical and chemical methods for their synthesis, and 28 articles were selected to provide the data for biological methods for the formulation of metal NPs from bacteria, algae, fungi, and plants with their extensive synthetic procedures. Moreover, 27 articles outlined various clinical applications of metal NPs due to their antimicrobial and anticancer activities and their use in drug delivery. CONCLUSION Several reviews are available on the synthesis of metal nanoparticles and their pharmaceutical applications. However, this review provides updated research data along with the various methods employed for their development. It also summarizes their various advantages and clinical applications (anticancer, antimicrobial drug delivery, and many others) for various phytoconstituents. The overview of earlier patents by several scientists in the arena of metallic nanoparticle preparation and formulation is also presented. This review will be helpful in increasing the current knowledge and will also inspire to innovation of nanoparticles for the precise and targeted delivery of phytoconstituents for the treatment of several diseases.
Collapse
Affiliation(s)
- Sarika Dhir
- B.S. Anangpuria Institute of Pharmacy, Faridabad, 121004, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, Haryana, India
| | - Mahima Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala Cantt, 133001, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| |
Collapse
|
13
|
Yang GQ, Cai W, Zhang Z, Wang Y. Progress in Programmable DNA-Aided Self-Assembly of the Master Frame of a Drug Delivery System. ACS APPLIED BIO MATERIALS 2023; 6:5125-5144. [PMID: 38011318 DOI: 10.1021/acsabm.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every year cancer causes approximately 10 million deaths globally. Researchers have developed numerous targeted drug delivery systems (DDSs) with nanoparticles, polymers, and liposomes, but these synthetic materials have poor degradability and low biocompatibility. Because DNA nanostructures have good degradability and high biocompatibility, extensive studies have been performed to construct DDSs with DNA nanostructures as the molecular-layer master frame (MF) assembled via programmable DNA-aided self-assembly for targeted drug release. To learn the progressing trend of self-assembly techniques and keep pace with their recent rapid advancements, it is crucial to provide an overview of their past and recent progress. In this review article, we first present the techniques to assemble the MF of a DDS with solely DNA strands; to assemble MFs with one or more additional type of construction materials, e.g., polymers (including RNA and protein), inorganic nanoparticle, or metal ions, in addition to DNA strands; and to assemble the more complex DNA nanocomplexes. It is observed that both the techniques used and the MFs constructed have become increasingly complex and that the DDS constructed has an increasing number of advanced functions. From our focused review, we anticipate that DDSs with the MF of multiple building materials and DNA nanocomplexes will attract an increasing number of researchers' interests. On the basis of knowledge about materials and functional components (e.g., targeting aptamers/peptides/antibodies and stimuli for drug release) obtained from previously performed studies, researchers can combine more materials with DNA strands to assemble more powerful MFs and incorporate more components to endow DDSs with improved or additional properties/functions, thereby subsequently contributing to cancer prevention.
Collapse
Affiliation(s)
- Gary Q Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Weibin Cai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, P. R. China
| | - Zhiwen Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yujun Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
15
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
17
|
Saadh MJ, Baher H, Li Y, Chaitanya M, Arias-Gonzáles JL, Allela OQB, Mahdi MH, Carlos Cotrina-Aliaga J, Lakshmaiya N, Ahjel S, Amin AH, Gilmer Rosales Rojas G, Ameen F, Ahsan M, Akhavan-Sigari R. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery. ENVIRONMENTAL RESEARCH 2023; 233:116490. [PMID: 37354932 DOI: 10.1016/j.envres.2023.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Yuanji Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mvnl Chaitanya
- Department of Pharmacognosy, School of Pharmacy, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | | | | | | | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Salam Ahjel
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurememts and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
18
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
19
|
Eivazzadeh-Keihan R, Sadat Z, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Maleki A, Mahdavi M. Fabrication and biological investigation of a novel star polymer based on magnetic cyclic aromatic polyimide chains. Sci Rep 2023; 13:9598. [PMID: 37311979 DOI: 10.1038/s41598-023-36619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Herein, a novel nanostructure based on cyclic aromatic polyimide with statistical star polymer structure was synthesized via the functionalization of the CuFe2O4 MNPs surface. The polymerization process on the functionalized surface of CuFe2O4 MNPs was performed with pyromellitic dianhydride and phenylenediamine derivatives. All analytical methods such as Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) pattern, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM), vibrating-sample magnetometer (VSM) were performed to characterize the structure of CuFe2O4@SiO2-polymer nanomagnetic. The cytotoxicity of CuFe2O4@SiO2-Polymer was investigated for biomedical application by MTT test. The results proved that this nanocmposite was biocompatible with HEK293T healthy cells. Also, the evaluation antibacterial property of CuFe2O4@SiO2-Polymer showed that its MIC in Gram-negative and Gram-positive bacteria were 500-1000 µg/mL, so it had antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Younus LA, Mahmoud ZH, Hamza AA, Alaziz KMA, Ali ML, Yasin Y, Jihad WS, Rasheed T, Alkhawaldeh AK, Ali FK, Kianfar E. Photodynamic therapy in cancer treatment: properties and applications in nanoparticles. BRAZ J BIOL 2023; 84:e268892. [PMID: 37311125 DOI: 10.1590/1519-6984.268892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/06/2023] [Indexed: 06/15/2023] Open
Abstract
Most of the treatment strategies for tumors and other disorders is photodynamic therapy (PDT). For several years, increasing the efficiency of nanostructured treatment devices, including light therapy, has been considered in different treatment methods. Light Dynamics The use of nanomaterial in this method's production and progress. The use of nanoparticles as carriers is a promising accomplishment, since all the criteria for an ideal photodynamic therapy agent can be given with these nanomaterials. The kinds of nanoparticles that have recently been used in photodynamic therapy are mentioned in this article. Latest advancements are being explored in the use of inorganic nanoparticles and biodegradable polymer-based nanomaterial as carriers of photosynthetic agents. Photosynthetic nanoparticles, self-propagating nanoparticles, and conversion nanoparticles are among the successful photodynamic therapy nanoparticles addressed in this report.
Collapse
Affiliation(s)
- L A Younus
- Jabir Ibn Hayyan Medical University, Faculty of Pharmacy, Department of Clinical Laboratory Sciences, Al Najaf Al Ashraf, Iraq
| | - Z H Mahmoud
- University of Diyala, College of Sciences, Department of Chemistry, Diyala, Iraq
| | - A A Hamza
- University of Al-Ameed, Faculty of Pharmacy, Department of Pharmaceutics, Karbala, Iraq
| | - K M A Alaziz
- Al-Noor University College, Department of Pharmacy, Nineveh, Iraq
| | - M L Ali
- Al-Mustaqbal University College, Department of Dentistry, Babylon, Iraq
| | - Y Yasin
- Al-Farahidi University, College of Medical Technology, Baghdad, Iraq
| | - W S Jihad
- Mazaya University College, Department of Medical Technology, Dhi-Qar, Iraq
| | - T Rasheed
- Prince Sattam Bin Abdulaziz University, College of Science and Humanities, Department of English, Al-Kharj, Alkharj, Saudi Arabia
| | - A K Alkhawaldeh
- Al-Balqa Applied University, Zarqa University College, Department of Medical Allied Sciences, Zarqa, Jordan
| | - F K Ali
- University of Diyala, College of Sciences, Department of Chemistry, Diyala, Iraq
| | - E Kianfar
- Istanbul Medeniyet University, Faculty of Engineering and Pure Sciences, Mechanical Engineering Department, Istanbul, turkey
- Arak Branch, Islamic Azad University, Department of Chemical Engineering, Arak, Iran
- Islamic Azad University, Young Researchers and Elite Club, Gurcharan Branch, Gachsaran, Iran
| |
Collapse
|
21
|
Soni A, Bhandari MP, Tripathi GK, Bundela P, Khiriya PK, Khare PS, Kashyap MK, Dey A, Vellingiri B, Sundaramurthy S, Suresh A, Pérez de la Lastra JM. Nano-biotechnology in tumour and cancerous disease: A perspective review. J Cell Mol Med 2023; 27:737-762. [PMID: 36840363 PMCID: PMC10002932 DOI: 10.1111/jcmm.17677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/26/2023] Open
Abstract
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood-brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood-brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.
Collapse
Affiliation(s)
- Ambikesh Soni
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Priyavand Bundela
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical SchoolAmity University HaryanaHaryanaIndia
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityWest BengalKolkataIndia
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational ResearchDepartment of ZoologySchool of Basic Sciences, Central University of PunjabMaulana Azad National Institute of TechnologyBathindaIndia
| | - Suresh Sundaramurthy
- Department of Chemical EngineeringMaulana Azad National Institute of TechnologyMadhya PradeshBhopalIndia
| | - Arisutha Suresh
- Department of EnergyMaulana Azad National Institute of Technology & M/s Eco Science & TechnologyMadhya PradeshBhopalIndia
| | - José M. Pérez de la Lastra
- Biotecnología de macromoléculasInstituto de Productos Naturales y Agrobiología, (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
22
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
23
|
Kabiri F, Aghaei SS, Pourbabaee AA, Soleimani M, Komeili Movahhed T. Antibiofilm and cytotoxic potential of extracellular biosynthesized gold nanoparticles using actinobacteria Amycolatopsis sp. KMN. Prep Biochem Biotechnol 2023; 53:265-278. [PMID: 35594246 DOI: 10.1080/10826068.2022.2076244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study intends to biosynthesize gold nanoparticles (AuNPs) using Amycolatopsis sp. KMN and to investigate its potential antibiofilm, cytotoxic and antioxidant activities. The physicochemical characterization of biosynthesize AuNPs was identified by UV-Visible, energy-dispersive X-ray, and Fourier transform infrared spectroscopy, as well as high-resolution transmission electron microscopy, X-ray diffraction, zeta potential, and dynamic light scattering methods. Crystal violet assay and scanning electron microscopy showed that the AuNPs with a particle size of 44.4 nm have a strong antibiofilm activity (at 750 µg/ml concentration) against bacteria strains viz Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. The result also demonstrated strong cytotoxic activity against two cell lines, MCF-7 and HT-29. The MTT test result displayed that over a period of 48 hr, the IC50 of AuNPs was 600 and 300 µg/ml for MCF-7 and HT-29 cell lines, respectively. The IC50 of AuNPs against DPPH was 46.87 µg/ml. This is the first report that examines Amycolatopsis sp. strain KMN-mediated synthesis of AuNPs is rapid and in situ with antibiofilm and cytotoxicity activities. Moreover, it has the potential for an effective antibiofilm and cytotoxic activity that could be used in future therapeutic applications.
Collapse
Affiliation(s)
- Faezeh Kabiri
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Ahmad Ali Pourbabaee
- Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Talha M, Pathak N, Bhattacharyya S, Lin Y. Bio-nanomaterials and their applications. APPLICATIONS OF MULTIFUNCTIONAL NANOMATERIALS 2023:461-473. [DOI: 10.1016/b978-0-12-820557-0.00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
26
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Barbhuiya RI, Tinoco NN, Ramalingam S, Elsayed A, Subramanian J, Routray W, Singh A. A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:4477-4499. [PMID: 36343386 DOI: 10.1080/10408398.2022.2142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fruits and vegetables are an integral part of our diet attributed to their appealing taste, flavor, and health-promoting characteristics. However, due to their high-water activity, they are susceptible to microbial spoilage and diseases at any step in the food supply chain, from pre-harvest treatment to post-harvest storage and transportation. As a result, food researchers and engineers are developing innovative technologies that can be used to reduce the loss of fruits and vegetables on-farm and during postharvest processing. The purpose of this study was to gather and discuss the scientific data on the disease-suppressive activity of nanoparticles against plant pathogens. The progress and limitations of innovative approaches for improving nanoparticles' efficiency and dependability have been studied to develop effective substitutes for synthetic chemical fungicides and pesticides, in managing disease in fruits and vegetables. The findings of this study strongly suggests that nanotechnology has the required ability for disease suppression in fruits and vegetables. Applications of specific nanoparticles under specified conditions can enhance nutrition delivery to plants, provide better antibacterial and disease suppression activity. Nanoparticles can also lessen the quantity of agrichemicals/metals released into the environment as compared to standard formulations, which is one of the most impressive advances.
Collapse
Affiliation(s)
| | | | | | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
De Marco I. Supercritical Fluids and Nanoparticles in Cancer Therapy. MICROMACHINES 2022; 13:1449. [PMID: 36144072 PMCID: PMC9503529 DOI: 10.3390/mi13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles are widely used in the pharmaceutical industry due to their high surface-to-volume ratio. Among the many techniques used to obtain nanoparticles, those based on supercritical fluids ensure reduced dimensions, narrow particle size distributions, and a very low or zero solvent residue in the powders. This review focuses on using supercritical carbon dioxide-based processes to obtain the nanoparticles of compounds used for the treatment or prevention of cancer. The scientific literature papers have been classified into two groups: nanoparticles consisting of a single active principle ingredient (API) and carrier/API nanopowders. Various supercritical carbon dioxide (scCO2) based techniques for obtaining the nanoparticles were considered, along with the operating conditions and advantages and disadvantages of each process.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
29
|
Dolat Khan, Rahman AU, Kumam P, Watthayu W, Sitthithakerngkiet K, Galal AM. Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model. Heliyon 2022; 8:e10170. [PMID: 36039134 PMCID: PMC9418218 DOI: 10.1016/j.heliyon.2022.e10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is clearly a major cause of disease and fatality around the world, yet little is known about how it starts and spreads. In this study, a model in mathematical form of breast cancer guided by a system of (ODE'S) ordinary differential equations is studied in depth to examine the thermal effects of various shape nanoparticles on breast cancer hyperthermia therapy in the existence of a porous media with fractional derivative connection, when utilizing microwave radiative heating. The unsteady state is determined precisely using the Laplace transform approach to crop a more decisive examination of temperature dissemination of blood temperature inside the breast tissues. Durbin's and Zakian's techniques are used to find Laplace inversion. Mild temperature hyperthermia is used in the treatment, which promotes cell death by increasing cell nervousness to radiation therapy and flow of blood in tumor. In the graphical findings, we can witness the distinct behavior of hyperthermia therapy on tumor cells by applying various metabolic heat generation rates across various time intervals to attain the optimal therapeutic temperature point. Particularly, we used graphs to visualize the behavior of different Nanoparticles with different shaped during hypothermia therapy. In comparison to other nanoparticles and shapes, it demonstrates that gold nanoparticles with a platelet shape are the best option for improving heat transmission. Which assess of heat transfer up to 16.412%.
Collapse
Affiliation(s)
- Dolat Khan
- Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Ata ur Rahman
- Department of Mathematics, City University of Science & Information Technology, Peshawar, KPK, Pakistan
| | - Poom Kumam
- Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Wiboonsak Watthayu
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Kanokwan Sitthithakerngkiet
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518, Wongsawang, Bangsue, Bangkok, 10800, Thailand
| | - Ahmed M. Galal
- Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Saudi Arabia
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, P. O. 35516, Mansoura, Egypt
| |
Collapse
|
30
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
31
|
Iyengar D, Tatiparti K, Gavande NS, Sau S, Iyer AK. Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer. Drug Discov Today 2022; 27:1554-1559. [PMID: 35247592 DOI: 10.1016/j.drudis.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is the second leading cause of cancer-related death in the USA. The 5-year survival rate for pancreatic cancer is as low as 10%, making it one of the most deadly cancers. This dismal prognosis is caused, in part, by the lack of early detection and screening options, leading to late-stage detection of the disease, at a point at which chemotherapy is no longer effective. However, nanoparticle (NP) drug delivery systems have increased the efficacy of chemotherapeutics by improving the targeting ability of drugs to the tumor site, while also decreasing the risk of local and systemic toxicity. Such efforts can contribute to the development of early diagnosis and routine screening tests, which will drastically improve the survival rates and prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Disha Iyengar
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Zhou J, Chen L, Chen L, Zeng X, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol 2022; 86:580-594. [DOI: 10.1016/j.semcancer.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
33
|
Mulder D, Taute CJF, van Wyk M, Pretorius PJ. A Comparison of the Genotoxic Effects of Gold Nanoparticles Functionalized with Seven Different Ligands in Cultured Human Hepatocellular Carcinoma Cells. NANOMATERIALS 2022; 12:nano12071126. [PMID: 35407243 PMCID: PMC9000686 DOI: 10.3390/nano12071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (GNPs) have shown great potential in diagnostic and therapeutic applications in diseases, such as cancer. Despite GNP versatility, there is conflicting data regarding the toxicity of their overall functionalization chemistry for improved biocompatibility. This study aimed to determine the possible genotoxic effects of functionalized GNPs in Human hepatocellular carcinoma (HepG2) cells. GNPs were synthesized and biofunctionalized with seven common molecules used for biomedical applications. These ligands were bovine serum albumin (BSA), poly(sodium 4-styrene sulfonate) (PSSNA), trisodium citrate (citrate), mercaptoundecanoic acid (MUA), glutathione (GSH), polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG). Before in vitro genotoxicity assessment, inductively coupled plasma mass spectrometry was used to determine GNP cellular internalization quantitatively, followed by cell-based assays; WST-1 to find IC 30 and ApoPercentage for apoptotic induction time-points. The effect of the GNPs on cell growth in real-time was determined by using xCELLigence, followed by a comet assay for genotoxicity determination. The HepG2 cells experienced genotoxicity for all GNP ligands; however, they were able to initiate repair mechanisms and recover DNA damage, except for two functionalization chemistries.
Collapse
|
34
|
Park JH, Cho YW, Kim TH. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. BIOSENSORS 2022; 12:180. [PMID: 35323450 PMCID: PMC8946561 DOI: 10.3390/bios12030180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
The advancement of science and technology has led to the recent development of highly sensitive pathogen biosensing techniques. The effective treatment of pathogen infections requires sensing technologies to not only be sensitive but also render results in real-time. This review thus summarises the recent advances in optical surface plasmon resonance (SPR) sensor technology, which possesses the aforementioned advantages. Specifically, this technology allows for the detection of specific pathogens by applying nano-sized materials. This review focuses on various nanomaterials that are used to ensure the performance and high selectivity of SPR sensors. This review will undoubtedly accelerate the development of optical biosensing technology, thus allowing for real-time diagnosis and the timely delivery of appropriate treatments as well as preventing the spread of highly contagious pathogens.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea; (J.-H.P.); (Y.-W.C.)
| |
Collapse
|
35
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
36
|
Mohanta YK, Mishra AK, Nayak D, Patra B, Bratovcic A, Avula SK, Mohanta TK, Murugan K, Saravanan M. Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3863138. [PMID: 35251470 PMCID: PMC8894014 DOI: 10.1155/2022/3863138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022]
Abstract
Green-based synthesis of metal nanoparticles using marine seaweeds is a rapidly growing technology that is finding a variety of new applications. In the present study, the aqueous extract of a marine seaweed, Gracilaria edulis, was employed for the synthesis of metallic nanoparticles without using any reducing and stabilizing chemical agents. The visual color change and validation through UV-Vis spectroscopy provided an initial confirmation regarding the Gracilaria edulis-mediated green synthesized silver nanoparticles. The dynamic light scattering studies and high-resolution transmission electron microscopy pictographs exhibited that the synthesized Gracilaria edulis-derived silver nanoparticles were roughly spherical in shape having an average size of 62.72 ± 0.25 nm and surface zeta potential of -15.6 ± 6.73 mV. The structural motifs and chemically functional groups associated with the Gracilaria edulis-derived silver nanoparticles were observed through X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. Further, the synthesized nanoparticles were further screened for their antioxidant properties through DPPH, hydroxyl radical, ABTS, and nitric oxide radical scavenging assays. The phycosynthesized nanoparticles exhibited dose-dependent cytotoxicity against MDA-MB-231 breast carcinoma cells having IC50 value of 344.27 ± 2.56 μg/mL. Additionally, the nanoparticles also exhibited zone of inhibition against pathogenic strains of Bacillus licheniformis (MTCC 7425), Salmonella typhimurium (MTCC 3216), Vibrio cholerae (MTCC 3904), Escherichia coli (MTCC 1098), Staphylococcus epidermidis (MTCC 3615), and Shigella dysenteriae (MTCC9543). Hence, this investigation explores the reducing and stabilizing capabilities of marine sea weed Gracilaria edulis for synthesizing silver nanoparticles in a cost-effective approach with potential anticancer and antimicrobial activity. The nanoparticles synthesized through green method may be explored for their potential utility in food preservative film industry, biomedical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi-793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan-38541, Gyeongsangbuk-do, Republic of Korea
| | - Debasis Nayak
- Department of Wild Life and Biodiversity Conservation, Maharaja Sriram Chandra Bhanjadeo University, Baripada 757003, India
| | - Biswajit Patra
- School of Life Sciences, Sambalpur University, Odisha, India
| | - Amra Bratovcic
- Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Univerzitetska 8, 75000 Tuzla, Bosnia and Herzegovina
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Kadarkarai Murugan
- School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi-793101, India
| | - Muthupandian Saravanan
- Department of Microbiology, Division of Biomedical Sciences, Mekelle University, Ethiopia
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077 Chennai, India
| |
Collapse
|
37
|
González-Colsa J, Serrera G, Saiz JM, Ortiz D, González F, Bresme F, Moreno F, Albella P. Gold nanodoughnut as an outstanding nanoheater for photothermal applications. OPTICS EXPRESS 2022; 30:125-137. [PMID: 35201187 DOI: 10.1364/oe.446637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 05/18/2023]
Abstract
Photoinduced hyperthermia is a cancer therapy technique that induces death to cancerous cells via heat generated by plasmonic nanoparticles. While previous studies have shown that some nanoparticles can be effective at killing cancer cells under certain conditions, there is still a necessity (or the need) to improve its heating efficiency. In this work, we perform a detailed theoretical study comparing the thermoplasmonic response of the most effective nanoparticle geometries up to now with a doughnut-shaped nanoparticle. We numerically demonstrate that the latter exhibits a superior tunable photothermal response in practical illumination conditions (unpolarized light). Furthermore, we show that nanoparticle heating in fluidic environments, i.e., nanoparticles undergoing Brownian rotations, strongly depends on the particle orientation with respect to the illumination source. We conclude that nanodoughnuts are the best nanoheaters in our set of structures, with an average temperature increment 40% higher than the second best nanoheater (nanodisk). Furthermore, nanodoughnuts feature a weak dependence on orientation, being therefore ideal candidates for photothermal therapy applications. Finally, we present a designing guide, covering a wide range of toroid designs, which can help on its experimental implementation.
Collapse
|
38
|
Zhao Y, Yao H, Yang K, Han S, Chen S, Li Y, Chen S, Huang K, Lian G, Li J. Arsenic Trioxide-loaded nanoparticles Enhance the Chemosensitivity of Gemcitabine in Pancreatic Cancer via Reversal of Pancreatic Stellate Cells Desmoplasia through Targeting AP4/Galectin-1 Pathway. Biomater Sci 2022; 10:5989-6002. [DOI: 10.1039/d2bm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic stellate cell (PSCs) constitutes the fibrotic tumor microenvironment composed of the stroma matrix, which blocks the penetration of Gemcitabine (GEM) in pancreatic adenocarcinoma (PDAC) and results in chemoresistance. We...
Collapse
|
39
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
40
|
A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip. PHOTONICS 2021. [DOI: 10.3390/photonics8120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The outbreak of the new coronavirus (SARS-CoV-2) infection has become a global public health crisis. Antigen detection strips (colloidal gold) can be widely used in novel coronavirus clinical screening and can even be extended to home self-testing, which provides a practical and effective way for people to obtain health status information away from the crowd. In this paper, a colloidal gold detection system without complex devices is proposed, which is based on smartphone usage along with a mobile-phone software embedded with normalization algorithms and a special designed background paper. The basic principle of the device relies on image processing. First, the data of the green channel of the image captured by a smartphone are selected to be processed. Second, the calibration curves are established using standard black and white card, and the calibration values under different detection environments are obtained by calibration curves. Finally, to verify the validity of the proposed method, various standard solutions with different concentrations are tested. Results show that this method can eliminate the influence of different environments on the test results, the test results in different detection environments have good stability and the variation coefficients are less than 5%. It fully proves that the detection system designed in this paper can detect the result of colloidal gold immunochromatographic strip in time, conveniently and accurately in different environments.
Collapse
|
41
|
Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. J Control Release 2021; 339:41-50. [PMID: 34560156 DOI: 10.1016/j.jconrel.2021.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Cancer, a disease of unknown origin is the second most common reason of death worldwide after heart attacks and therefore is a major threat to human beings. Currently, chemotherapy is the only approach for delivering anti-cancer drugs but shows severe systemic toxicities such as alopecia, loss of appetite, anemia, gastric irritation, neurotoxicity and nephrotoxicity. Additionally, chemotherapeutics fails to achieve the expected therapeutic outcome due to their limited solubility, in-vivo instability and lack of targeting efficiency. Encapsulating drugs in metallic nanoparticles like gold, silver and metal oxides (magnetic) help to overcome limitations of chemotherapy and transports anti-cancer drugs effectively at the targeted site due to the advantages such as optimal size, surface morphology, higher conductivity and in-vivo stability. Moreover, these metals can be triggered externally using NIR radiations or magnetic field thereby improving the drug release kinetics. Some frequently used chemotherapeutic agents such as doxorubicin, paclitaxel, methotrexate, etc. degrade rapidly due to their hydrophobic nature and show in-vivo instability. Cyclodextrin offers structural compatibility for encapsulating such hydrophobic drugs and improves their loading capacity, solubility and stability without showing any systemic toxicities. Therefore, researchers designed cyclodextrin-complexed metallic nanoparticles as a novel platform to overcome pitfalls of conventional chemotherapy like gastric irritation, hair loss, neurotoxicity, etc. This review article provides detail insight of metallic nanocarriers containing cyclodextrin-encapsulated anti-cancer agents for effective cancer therapy. It can be concluded that this novel approach holds a great potential for clinical application in cancer diagnosis, treatment with minimum toxicity and maximum efficacy.
Collapse
Affiliation(s)
- Sahil Gandhi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
42
|
Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210625153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most fatal forms of cancer includes cancer of the pancreas And the most
rapid malignancy is observed in PDAC (pancreatic ductal adenocarcinoma). The high lethality rate
is generally due to very late diagnosis and resistance to traditional chemotherapeutic agents. Desmoplastic
stromal barrier results in resistance to immunotherapy. Other reasons for the high lethality
rate include the absence of effective treatment and standard screening tests. Hence, there is a
need for effective novel carrier systems. “A formulation, method, or device that allows the desired
therapeutic substance to reach its site of action in such a manner that nontarget cells experience
minimum effect is referred to as a drug delivery system”. The delivery system is responsible for introducing
the active component into the body. They are also liable for boosting the efficacy and desirable
targeted action on the tumorous tissues. Several studies, researches, and developments have
yielded various advanced drug delivery systems, which include liposomes, nanoparticles, carbon
nanotubules, renovoCath, etc. These systems control rate and location of the release. They are designed
while taking into consideration characteristic properties of the tumor and tumor stroma. These
delivery systems overcome the barriers in drug deliverance in pancreatic cancer. Alongside providing
palliative benefits, these delivery systems also aim to correct the underlying reason for the
defect. The following review article aims and focuses to bring out a brief idea about systems, methods,
and technologies for futuristic drug deliverance in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Naureen Ali
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| |
Collapse
|
43
|
Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021; 16:6313-6328. [PMID: 34552327 PMCID: PMC8450289 DOI: 10.2147/ijn.s279192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with one of the worst survival rates due to its insidious onset and resistance to therapies. Most therapeutics show a desired anticancer effect in vitro; however, very poor efficacy in vivo because of the limited drug delivery and penetration into pancreatic tumors attributed to the abundance of the tumor stroma, ie, the fibrotic tumor microenvironment surrounding the cancer cells. For a better understanding of the challenges posed by the pancreatic tumor stroma, we outline the key features of the tumor microenvironment. Then we highlight major strategies used to tackle the challenges to improve drug penetration into the tumor and achieve enhanced efficacy (pre)clinically. Furthermore, we describe nanomedicine strategies to modulate the tumor stroma, degrade the extracellular matrix, and co-deliver multi-functional drugs, to improve the chemotherapeutics delivery and penetration into pancreatic tumors.
Collapse
Affiliation(s)
- Tao Lu
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
44
|
Ahmed W, Zhang H, Gao C. Influence of enantiomeric polylysine grafted on gold nanorods on the uptake and inflammatory response of bone marrow-derived macrophages in vitro. J Biomed Mater Res A 2021; 110:143-155. [PMID: 34289249 DOI: 10.1002/jbm.a.37272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
The macrophages take significant roles in homeostasis, phagocytosis of pathogenic organisms, and modulation of host defense and inflammatory processes. In this study, the enantiomeric poly-D-lysine (PDL) and poly-L-lysine (PLL) were conjugated to gold nanorods (AuNRs) to study their influence on the polarization of macrophages. The AuNRs capped with cetyl trimethyl ammonium bromide (CTAB) (AuNRs@CTAB) exhibited larger toxicity to macrophages when their concentration was higher than 50 μg/ml, whereas the AuNRs@PDL and AuNRs@PLL showed neglectable toxicity at the same concentration compared with the control. The AuNRs@PDL and AuNRs@PLL were internalized into the macrophages with a higher value than the AuNRs@CTAB as revealed by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) characterization. Unlike the grafted PDL/PLL on flat substrates, the AuNRs@PDL and AuNRs@PLL were not able to polarize M0 macrophages to any other phenotype after internalization as confirmed by ELISA, flow cytometry, and fluorescence microscopy analysis. Nonetheless, the expression of M1 phenotype markers was reduced after the internalization of AuNRs@PDL and AuNRs@PLL by M1 macrophages. The assays of ELISA, flow cytometry, and reactive oxygen species levels exhibited decrease in inflammation of the M1 macrophages.
Collapse
Affiliation(s)
- Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
46
|
Biomarkers in Pancreatic Cancer as Analytic Targets for Nanomediated Imaging and Therapy. MATERIALS 2021; 14:ma14113083. [PMID: 34199998 PMCID: PMC8200189 DOI: 10.3390/ma14113083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
As the increase in therapeutic and imaging technologies is swiftly improving survival chances for cancer patients, pancreatic cancer (PC) still has a grim prognosis and a rising incidence. Practically everything distinguishing for this type of malignancy makes it challenging to treat: no approved method for early detection, extended asymptomatic state, limited treatment options, poor chemotherapy response and dense tumor stroma that impedes drug delivery. We provide a narrative review of our main findings in the field of nanoparticle directed treatment for PC, with a focus on biomarker targeted delivery. By reducing drug toxicity, increasing their tumor accumulation, ability to modulate tumor microenvironment and even improve imaging contrast, it seems that nanotechnology may one day give hope for better outcome in pancreatic cancer. Further conjugating nanoparticles with biomarkers that are overexpressed amplifies the benefits mentioned, with potential increase in survival and treatment response.
Collapse
|
47
|
Biswas S, Chawda M, Thakur K, Gudi R, Bellare J. Physicochemical Variation in Nanogold-Based Ayurved Medicine Suvarna Bhasma Produced by Various Manufacturers Lead to Different In Vivo Bioaccumulation Profiles. J Evid Based Integr Med 2021; 26:2515690X211011064. [PMID: 33906452 PMCID: PMC8743929 DOI: 10.1177/2515690x211011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Suvarna Bhasma (SB) is a gold particle-based medicine that is used in Ayurved to treat tuberculosis, arthritis and nervous diseases. Traditionally, the Ayurved preparation processes of SB do exist, but they are all long, tedious and involve several steps. Due to this, there is a possibility of bypassing the necessary Ayurved processes or non-adherence to all steps or use of synthetic gold particles. Our aim is to characterize 5 commercial SB preparations from 5 different manufacturers. A comparative physicochemical, pharmacokinetic (PK) and bioaccumulation study was carried out on all the 5 SB preparations. The general appearance such as color and texture of these 5 samples were different from each other. The size, shape and gold concentration (from 32-98 wt%) varied among all the 5 SBs. The accumulation of ionic gold in zebrafish and gold concentration profiles in rat blood were found to be significantly different for all the 5 SBs. Non-compartmental PK model obtained from the concentration-time profile showed significant differences in various PK parameters such as peak concentration (Cmax), half-life (t1/2) and terminal elimination slope (λz) for all the 5 SB preparations. SB-B showed the highest Cmax (8.55 μg/L), whereas SB-D showed the lowest Cmax (4.66 μg/L). The dissolution of ionic gold from SBs in zebrafish tissue after the oral dose had a 5.5-fold difference between the highest and lowest ionic gold concentrations. All the 5 samples showed distinct physicochemical and biological properties. Based on characteristic microscopic morphology, it was found that 2 preparations among them were suspected of being manufactured by non-adherence to the mentioned Ayurved references.
Collapse
Affiliation(s)
- Snehasis Biswas
- Department of Chemical Engineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Mukesh Chawda
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Kapil Thakur
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Ramacharya Gudi
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Jayesh Bellare
- Department of Chemical Engineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.,Wadhwani Research Centre for Bioengineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
48
|
Al Saqr A, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Anwer MK, Khan S, Lila ASA, Arab HH, Hegazy WAH. Synthesis of Gold Nanoparticles by Using Green Machinery: Characterization and In Vitro Toxicity. NANOMATERIALS 2021; 11:nano11030808. [PMID: 33809859 PMCID: PMC8004202 DOI: 10.3390/nano11030808] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +966-533-564-286
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow 226026, India;
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
49
|
Shoeibi S. Comparative Analysis of the Rabbit Endothelial Progenitor Cells from Bone Marrow and Peripheral Blood Treated with Selenium Nanoparticles. Anticancer Agents Med Chem 2021; 21:803-808. [PMID: 32951582 DOI: 10.2174/1871520620666200918112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/05/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium Nanoparticles (Se-NPs) are known for their antioxidant and anti-inflammatory activities, which are effective in preventing oxidative damage and improving physiological processes. OBJECTIVES This study aimed at investigating the effects of biosynthesized Se-NPs on bone marrow-derived Endothelial Progenitor Cells (bone marrow-derived EPCs) and blood-derived endothelial progenitor cells (blood-derived EPCs) isolated from rabbits in vitro. METHODS The cultured EPCs incubated with biosynthesized Se-NPs at the concentrations of 0.19, 0.38, 0.76, 1.71, 3.42, 7.03, 14.25, 28.50, 57, 114, and 228μg/ml for 48h. After screening the proliferative potential of the Se-NPs by the MTT assay, the best concentrations were selected for Real-Time quantitative Polymerase Chain Reaction (RT-qPCR). Real-time quantification of Vascular Cell Adhesion Molecule 1 (VCAM-1), lectin-like oxidized Low-Density Lipoprotein (LDL) receptor-1 (LOX-1), endothelial Nitric Oxide Synthase (eNOS), and Monocyte Chemoattractant Protein-1 (MCP-1) gene expressions were analyzed by normalizing with Glyceraldehyde- 3-Phosphate Dehydrogenase (GAPDH) as an endogenous reference gene. RESULTS Blood-derived EPCs and bone marrow-derived EPCs showed morphological differences before treatment in vitro. Se-NPs treated EPCs indicated a significant dose-dependent proliferative activity (p<0.01). In general, the expression levels of VCAM-1, LOX-1, and MCP-1 mRNA were significantly decreased (p<0.01), whereas that of the eNOS expression was significantly increased at the concentrations of 7.3 and 14.25μg/ml (p<0.01). Although the expressions of MCP-1, LOX-1, and eNOS mRNA were decreased at certain concentrations of Se-NPs (p<0.01 and p<0.05, respectively) in the treated bone marrow-derived EPCs, no significant differences were observed in the VCAM-1 mRNA expression levels in bone marrow-derived EPCs compared with the control group (p>0.05). CONCLUSION This was the first report to demonstrate the effects of Se-NPs on proliferative, anti-oxidative, and anti-inflammatory activities for bone marrow-derived EPCs and blood-derived EPCs. Our findings suggested that Se-NPs could be considered as an effective agent that may ameliorate vascular problems.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|