1
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Duo X, Li Q, Wang J, Lv J, Hao X, Feng Y, Ren X, Shi C, Zhang W. Core/Shell Gene Carriers with Different Lengths of PLGA Chains to Transfect Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13315-13325. [PMID: 29100464 DOI: 10.1021/acs.langmuir.7b02934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to improve the transfection efficiency and reduce the cytotoxicity of gene carriers, many strategies have been used to develop novel gene carriers. In this study, five complex micelles (MSP(2 k), MSP(4 k), MSP(6 k), MSP(8 k), and MSP(10 k)) were prepared from methoxy-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (mPEG-b-PLGA) and sorbitol-poly(d,l-lactide-co-glycolide)-graft-PEI (sorbitol-PLGA-g-PEI, where the designed molecular weights of PLGA chains were 2 kDa, 4 kDa, 6 kDa, 8 kDa, and 10 kDa, respectively) copolymers by a self-assembly method, and the mass ratio of mPEG-b-PLGA to sorbitol-PLGA-g-PEI was 1/3. These complex micelles and their gene complexes had appropriate sizes and zeta potentials, and pEGFP-ZNF580 (pDNA) could be efficiently internalized into EA.hy926 cells by their gene complexes (MSP(2 k)/pDNA, MSP(4 k)/pDNA, MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA). The MTT assay results demonstrated that the gene complexes had low cytotoxicity in vitro. When the hydrophobic PLGA chain increased above 6 kDa, the gene complexes showed higher performance than that prepared from short hydrophobic chains. Moreover, the relative ZNF580 protein expression levels in MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA) groups were 79.6%, 71.2%, and 73%, respectively. These gene complexes could promote the transfection of endothelial cells, while providing important information and insight for the design of new and effective gene carriers to promote the proliferation and migration of endothelial cells.
Collapse
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities , Bayi middle Road 3, Xining, Qinghai 810007, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Juan Lv
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht , Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
3
|
Duo X, Wang J, Li Q, Neve AL, Akpanyung M, Nejjari A, Ali ZSS, Feng Y, Zhang W, Shi C. CAGW Peptide Modified Biodegradable Cationic Copolymer for Effective Gene Delivery. Polymers (Basel) 2017; 9:E158. [PMID: 30970836 PMCID: PMC6432137 DOI: 10.3390/polym9050158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
In recent years, gene therapy has become a promising technology to enhance endothelialization of artificial vascular grafts. The ideal gene therapy requires a gene carrier with low cytotoxicity and high transfection efficiency. In this paper, we prepared a biodegradable cationic copolymer poly(d,l-lactide-co-glycolide)-graft-PEI (PLGA-g-PEI), grafted Cys-Ala-Gly-Trp (CAGW) peptide onto this copolymer via the thiol-ene Click-reaction, and then prepared micelles by a self-assembly method. pEGFP-ZNF580 plasmids (pDNA) were condensed by these micelles via electrostatic interaction to form gene complexes. The CAGW peptide enables these gene complexes with special recognition for endothelial cells, which could enhance their transfection. As a gene carrier system, the PLGA-g-PEI-g-CAGW/pDNA gene complexes were evaluated and the results showed that they had suitable diameter and zeta potential for cellular uptake, and exhibited low cytotoxicity and high transfection efficiency for EA.hy926 cells.
Collapse
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, Qinghai, China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Agnaldo Luis Neve
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Mary Akpanyung
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Abdelilah Nejjari
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Zaidi Syed Saqib Ali
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China.
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht, Yaguan Road 135, Tianjin 300350, China.
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.
| | - Changcan Shi
- Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou 325011, Zhejiang, China.
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Wenzhou 325011, Zhejiang, China.
| |
Collapse
|
4
|
Shao D, Wu H, Shen F, Wu H, Quan J. Carbon dioxide-modified polyethylenimine as a novel gene delivery vector and its in vitro validation. J Biomater Appl 2017; 31:1257-1266. [PMID: 28350204 DOI: 10.1177/0885328217701324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the CO2-modified polyethylenimine, as a novel delivery vector, has been validated by combining with the plasmid DNA to form plasmid DNA/CO2-modified polyethylenimine complexes. We have modified polyethylenimine using CO2 to partially convert amine groups to carbamic acid groups. The buffering capacity and the plasmid DNA binding ability of the CO2-modified polyethylenimine and PEI-25 (polyethylenimine with Mw = 25 kDa) were characterized by acid-base titration and agarose gel electrophoresis, respectively. The particle size and zeta potential of the complexes were determined using a Zetasizer Nano ZS. Resistance to nuclease digestion was determined via DNase I protection assay. The cytotoxicity was measured by the MTT assay. The transfection efficiency of the complexes has been evaluated by flow cytometry. It is observed that the condensation capacity of CO2-modified polyethylenimine is still comparable to polyethylenimine and the CO2-modified polyethylenimine can protect plasmid DNA from degradation by DNase I. The diameter of the plasmid DNA/CO2-modified polyethylenimine complex is around 140 nm and the zeta potential decreases. MTT assays confirm that the cytotoxicity is much lower for plasmid DNA/CO2-modified polyethylenimine than for plasmid DNA/PEI-25. The flow cytometry found that in serum-free medium the transfection efficiency can reach a value of ∼60% for plasmid DNA/CO2-modified polyethylenimine, and in 10% fetal bovine serum medium, the transfection efficiency is still as high as ∼40%, which is much higher than that of plasmid DNA/PEI-25. CO2-modified polyethylenimine could be a novel and promising nonviral gene vector for gene therapy.
Collapse
Affiliation(s)
- Dongjie Shao
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Hanbing Wu
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Fawei Shen
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Hua Wu
- 2 Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Jing Quan
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| |
Collapse
|
5
|
Nishihara M, Kanda GN, Suzuki T, Yamakado S, Harashima H, Kamiya H. Enhanced transgene expression by plasmid-specific recruitment of histone acetyltransferase. J Biosci Bioeng 2017; 123:277-280. [DOI: 10.1016/j.jbiosc.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
|
6
|
LIU ZHAOLIANG, YOU CAILIAN, WANG BIAO, LIN JIANHONG, HU XUEFENG, SHAN XIUYING, WANG MEISHUI, ZHENG HOUBING, ZHANG YANDING. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells. Oncol Lett 2016; 11:3992-3998. [PMID: 27313729 PMCID: PMC4888209 DOI: 10.3892/ol.2016.4539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice.
Collapse
Affiliation(s)
- ZHAO-LIANG LIU
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - CAI-LIAN YOU
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - BIAO WANG
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - JIAN-HONG LIN
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - XUE-FENG HU
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - XIU-YING SHAN
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - MEI-SHUI WANG
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - HOU-BING ZHENG
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - YAN-DING ZHANG
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
7
|
Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J Control Release 2014; 196:37-51. [DOI: 10.1016/j.jconrel.2014.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
|
8
|
Hu Y, Zhou D, Li C, Zhou H, Chen J, Zhang Z, Guo T. Gene delivery of PEI incorporating with functional block copolymer via non-covalent assembly strategy. Acta Biomater 2013; 9:5003-12. [PMID: 23036947 DOI: 10.1016/j.actbio.2012.09.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 11/29/2022]
Abstract
A novel functional diblock polymer P(PEGMA-b-MAH) is prepared and incorporated to improve the gene delivery efficiency of poly(ethyleneimine) PEI via non-covalent assembly strategy. First, P(PEGMA-b-MAH) is prepared from l-methacrylamidohistidine methyl ester (MAH) by reversible addition fragmentation chain transfer polymerization, with poly[poly(ethylene glycol) methyl ether methacrylate] (P(PEGMA)) as the macroinitiator. Then P(PEGMA-b-MAH) is assembled with plasmid DNA (pDNA) and PEI (M(w)=10kDa) to form PEI/P(PEGMA-b-MAH)/pDNA ternary complexes. The agarose gel retardation assay shows that the presence of P(PEGMA-b-MAH) does not interfere with DNA condensation by the PEI. Dynamic light scattering tests show that PEI/P(PEGMA-b-MAH)/pDNA ternary complexes have excellent serum stability. In vitro transfection indicates that, compared to the P(PEGMA-b-MAH) free PEI-25k/pDNA binary complexes, PEI-10k/P(PEGMA-b-MAH)/pDNA ternary complexes have lower cytotoxicity and higher gene transfection efficiency, especially under serum conditions. The ternary complexes proposed here can inspire a new strategy for the development of gene and drug delivery vectors.
Collapse
Affiliation(s)
- Yuling Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Du L, Gao Y, Yang H, Li Y, Zhuang Q, Jia H, Nie G, Liu Y. Hydroxyethyl-functionalized ultrasmall chitosan nanoparticles as a gene delivery carrier. RSC Adv 2013. [DOI: 10.1039/c3ra42100g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
We still have a long way to go to effectively deliver genes! J Appl Biomater Funct Mater 2012; 10:82-91. [PMID: 23015375 DOI: 10.5301/jabfm.2012.9707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is emerging as a revolutionary alternative to conventional therapeutic approaches. However, its clinical application is still hampered by the lack of safe and effective gene delivery techniques. Among the plethora of diverse approaches used to ferry nucleic acids into target cells, non-viral vectors represent promising and safer alternatives to viruses and physical techniques. Both cationic lipids and polymers spontaneously wrap and shrink the genetic material in complexes named lipoplexes and polyplexes, respectively, thereby protecting it and shielding its negative charges. The development of non-viral vectors commenced more than two decades ago. Since then, some major classes of interesting molecules have been identified and modified to optimize their properties. However, the way towards the final goal of gene delivery, i.e. protein expression or gene silencing, is filled with obstacles and current non-viral carriers still have concerns about their overall efficiency. We strongly believe that the future of non-viral gene delivery relies on the development of multifunctional vectors specifically tailored with diverse functionalities that act more like viruses. Although these vectors are still a long way from clinical practice they are the ideal platform to effectively shuttle the genetic material to target cells in a safe and controlled way. In this review, after briefly introducing the basis of gene delivery and therapeutic applications we discuss the main polymeric and lipidic vectors utilized for gene delivery, focusing on the strategies adopted to overcome the major weaknesses inherent to their still limited activity, on the way towards ideal multifunctional vectors.
Collapse
|
11
|
Li C, Zhou D, Hu Y, Zhou H, Chen J, Zhang Z, Guo T. The target gene carrying validity to HePG2 cells with the brush-like glutathione modified chitosan compound. Carbohydr Polym 2012; 89:46-53. [DOI: 10.1016/j.carbpol.2012.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
12
|
Cai X, Dong C, Dong H, Wang G, Pauletti GM, Pan X, Wen H, Mehl I, Li Y, Shi D. Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 2012; 13:1024-34. [PMID: 22443494 DOI: 10.1021/bm2017355] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A dual stimulus-responsive mPEG-SS-PLL(15)-glutaraldehyde star (mPEG-SS-PLL(15)-star) catiomer is developed and biologically evaluated. The catiomer system combines redox-sensitive removal of an external PEG shell with acid-induced escape from the endosomal compartment. The design rationale for PEG shell removal is to augment intracellular uptake of mPEG-SS-PLL(15)-star/DNA complexes in the presence of tumor-relevant glutathione (GSH) concentration, while the acid-induced dissociation is to accelerate the release of genetic payload following successful internalization into targeted cells. Size alterations of complexes in the presence of 10 mM GSH suggest stimulus-induced shedding of external PEG layers under redox conditions that intracellularly present in the tumor microenvironment. Dynamic laser light scattering experiments under endosomal pH conditions show rapid destabilization of mPEG-SS-PLL(15)-star/DNA complexes that is followed by facilitating efficient release of encapsulated DNA, as demonstrated by agarose gel electrophoresis. Biological efficacy assessment using pEGFP-C1 plasmid DNA encoding green fluorescence protein and pGL-3 plasmid DNA encoding luciferase as reporter genes indicate comparable transfection efficiency of 293T cells of the catiomer with a conventional polyethyleneimine (bPEI-25k)-based gene delivery system. These experimental results show that mPEG-SS-PLL(15)-star represents a promising design for future nonviral gene delivery applications with high DNA binding ability, low cytotoxicity, and high transfection efficiency.
Collapse
Affiliation(s)
- Xiaojun Cai
- The Institute for Advanced Materials and Nano Biomedicine, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gu J, Wang X, Jiang X, Chen Y, Chen L, Fang X, Sha X. Self-assembled carboxymethyl poly (l-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection. Biomaterials 2012; 33:644-58. [DOI: 10.1016/j.biomaterials.2011.09.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/27/2011] [Indexed: 12/16/2022]
|
14
|
Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z. A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 2011; 154:177-88. [DOI: 10.1016/j.jconrel.2011.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/12/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
|